
1

Double Hashing

• Double Hashing

– Idea: When a collision occurs, increment the index 
(mod tablesize), just as in linear probing.  However, 
now do not automatically choose 1 as the increment 
value

> Instead use a second, different hash function (h2(x)) 
to determine the increment

– This way keys that hash to the same location 
will likely not have the same increment

> h1(x1) == h1(x2) with x1 != x2 is bad luck (assuming 
a good hash function)

> However, ALSO having h2(x1) == h2(x2) is REALLY 
bad luck, and should occur even less frequently

> It also allows for a collided key to move (mostly –
depending on h2(x)) anywhere in the table

– See example on next slide



Double Hashing Example
Index Value Probes

0

1

2

3

4

5

6

7

8

9

10

2

14

17

25

37

34

16

h(x) = x mod 11

h2(x) = (x mod 7) + 1

26

1

1

2

1

1

1

2

h(x) = 3

h(x) = 4

Compare to Slide 18 of 

Lecture 5

h2(x) = 5

h2(x) = 6

h(x) = 4

h(x) = 6

h(x) = 3

h(x) = 1

h(x) = 5



Double Hashing

• Note that we still get collisions with DH

– And even multiple collisions in one operation

– In this case we iterate just as we do with LP, using 
the DH increment multiple times

• However, because h2(x) varies for different keys, it 
allows us to spread the data throughout the table, 
even after an initial collision

• But we must be careful to ensure that double 
hashing always "works"

– Make sure increment is > 0

> Note the +1 in our h2(x): h2(x) = (x mod 7) + 1

> Our mod operator can result in 0, which is fine for an 
absolute address, but not for an increment!

3



Double Hashing

– Make sure no index is tried twice before 
all are tried once

> Why? Think about this?

> Consider table to right and assume:

> h(Z) = 3 and h2(Z) = 2

> What would happen when we search the 
table?

> How can we fix this?

> Make M a prime number

– Note that these were not issues for 
linear probing, since the increment is 
clearly > 0 and if our increment is 1 we 
will clearly try all indices once before 
trying any twice

4

Index Value

0

1 V

2

3 W

4

5 X

6

7 Y



5

Collision Resolution

• As  increases, double hashing shows a definite 
improvement over linear probing

– Discuss

• However, as   1 (or as N  M), both schemes 

degrade to Theta(N) performance

– Since there are only M locations in the table, as it fills 
there become fewer empty locations remaining

– Multiple collisions will occur even with double hashing

– This is especially true for inserts and unsuccessful finds

> Both of these continue until an empty location is 
found, and few of these exist

> Thus it could take close to M probes before the collision 
is resolved

> Since the table is almost full Theta(M) = Theta(N)



6

Open Addressing Issues

Open Addressing Issues

• We have just seen that performance degrades as N 
approaches M

– Typically for open addressing we want to keep the table 
partially empty

> For linear probing,  = 1/2 is a good rule of thumb

> For double hashing, we can go a bit higher (3/4 or more)

– How can we do this?

> Monitor the logical size (number of entries) vs. physical 
size (array length) to calculate 

> Resize the array and rehash all of the values when  gets 
past the threshold

> Rehashing all of the data seems like a LOT of work!

> Is this better than leaving it as is?

> We will discuss



Open Addressing Issues

• What about delete?

– Why is this a problem?

– Consider the LP table on the right 
and assume H(Z) == 2 but it was 
placed in index 4 due to a 
collision

– Search for Z would try 2, 3, 4, 
finding Z at location 4

– Now delete(Y) and search for Z 
again

> Search would stop at index 3 
with not found even though Z is 
present

– Deleting Y broke the chain

• How can we fix this? 

7

Index Value

0

1 W

2 X

3 Y

4 Z

5

6

7



Index Value

0

1 W

2 X

3

4

5

6

7

Open Addressing Issues

– One solution (see p. 471 of text)

> Rehash all keys from deleted key to 
end of cluster

> Note that in this case Z still hashes 
to 2 and will move to position 3 and 
once again be within the chain

> Will this be a lot of work?

> Discuss

– Will not work with double hashing 
though – why?

– What can we do with double 
hashing?

> Discuss

8

Y

Z



Open Addressing Issues

– Can we use hashing without delete?

> Yes, in some cases (ex: compiler using language 
keywords)

> We build a hash table, use it for searches, and then 
throw it away entirely

> We never delete individual items

9



10

Closed Addressing

• Closed Addressing

Recall that in this scheme, each location in the 
hash table represents a collection of data

• If we have a collision we resolve it within the 
collection, without changing hash addresses

Most common form is separate chaining

• Use a simple linked-list at each location in the table

– Look at example

> Using the same data that we previously used for linear 
probing and separate chaining

– Discuss placement of nodes in chain



Separate Chaining

11

Index Value

0

1

2

3

4

5

6

7

8

9

10

14

17

25

37

34

16

26

h(x) = 3

h(x) = 4

h(x) = 4

h(x) = 6

h(x) = 3

h(x) = 1

h(x) = 5

h(x) = x mod 11



Separate Chaining

Performance of separate chaining?

• Performance is dependent upon chain length

• Clearly a not found search must traverse entire chain

– Chain length is determined by the load factor, 

> Ave chain length = (total # of nodes)/(M)

> But (total # of nodes) == N so

> Ave chain length == N/M = 

– As long as  is a small constant, performance is still 
Theta(1)

> Ex: N = 150, M = 100   = 1.5

> This is still clearly Theta(1)

> Note also that N can now be greater than M

> More graceful degradation than open addressing 
schemes

12



Separate Chaining

– However, if N >> M, then it can still degrade to 
Theta(N) performance

> Ex: N = 1000, M = 10   = 100

> Thus we may still need to resize the array when 
gets too big

– A poor hash function can also degrade this into 
Theta(N)

> Think about what will happen in this case

> Discuss

• Can we develop a closed addressing scheme that 
can mitigate the damage caused by a poor hash 
function?

– Think about this!

13



14

Collision Resolution

What if we used "better" collections at each index?

• Sorted array?

– Space overhead if we make it large and copying overhead 
if we need to resize it

– Inserts require shifting

• BST?

– Could work

> Now a poor hash function would lead to a large tree at one 
index – still Theta(logN) as long as tree is relatively 
balanced

• But is it worth it?

– Not really – separate chaining is simpler (less overhead) 
and we want a good hash function anyway

– In this case we should fix the hash function


