
Course Notes for

CS 0445

Data Structures

By

John C. Ramirez

Department of Computer Science

University of Pittsburgh

2

• These notes are intended for use by students in
CS0445 at the University of Pittsburgh and no one else

• These notes are provided free of charge and may not
be sold in any shape or form

• Material from these notes is obtained from various
sources, including, but not limited to, the following:
 The course instructor

 Data Structures and Abstractions with Java, 2nd, 3rd and 4th

and 5th Editions by Frank Carrano (and Timothy Henry)

 Data Structures and the Java Collections Framework by
William Collins

 Classic Data Structures in Java by Timothy Budd

 Java By Dissection by Pohl and McDowell

 Java Software Solutions (various editions) by John Lewis and
William Loftus

 Many Oracle Java sites

3

Lecture 23: Searching

• Consider the task of searching for an item
within a collection

Given some collection C and some key value K,
find/retrieve the object whose key matches K

Z

J

P

K
Q

K

…

4

Lecture 23: Review of Searching Methods

• How do we know how to search so far?

Well let's first think of the collections that we
know how to search

• Array/Vector

– Unsorted

> How to search? Run-time?

– Sorted

> How to search? Run-time?

• Linked List

– Unsorted

> How to search? Run-time?

– Sorted

> How to search? Run-time?

5

Review of Searching Methods

So right now we are looking at O(lgN) as our
best time for searching

• Note that the techniques we have looked at so far are
doing direct comparisons of the keys

– Is the key we are looking for equal to the one in the
object?

– For binary search we are also using inequality

Can we possibly do any better?

• Perhaps if we use a very different approach

Before we do this let's define an interface that
will facilitate our general searches

Symbol Tables

• A symbol table or dictionary is an abstract
structure that associates a value with a key

We use the key to search a data structure for
the value

• These will be separate entities

• For a given application we may need only the keys or
only the values or both

We will define our symbol table / dictionary as
an interface

• Idea is that the dictionary specification does not
require any specific implementation

– In fact there are many different ways to implement this

6

Lecture 23: Dictionary Interface

import java.util.Iterator;

public interface DictionaryInterface<K, V>

{

public V add(K key, V value);

public V remove(K key);

public V getValue(K key);

public boolean contains(K key);

public Iterator<K> getKeyIterator();

public Iterator<V> getValueIterator();

public boolean isEmpty();

public int getSize();

public void clear();

} // end DictionaryInterface

7

• See complete code and comments in
author's file DictionaryInterface.java

• Standard Java has a
similar interface
called Map(K,V)
• See API

Lecture 23: Dictionary Interface

We could implement this interface using what
we already know

• Have an underlying sorted array

• Have an underlying linked list

– Both of these implementations are similar in that the
basic search involves direct comparisons of keys

• In other words, to find a target key, K, we must
compare K to one or more keys that are present in
the data structure

• If we change our basic approach perhaps we can get
an improvement

8

Lecture 23: Hashing

So let's try a different approach

• Assume we have an array (table), T of size M

• Assume we have a function h(x) that maps from our
key space into indexes {0,1,…,M-1}

– Also assume that h(x) can be done in time proportional
to the length of the key

Now how can we do an insert and find of some
key x?

• Think about it

9

0

1

2

3

…

…

M-1

10

Lecture 23: Hashing

Insert
i = h(x);

T[i] = x;

Find
i = h(x);

if (T[i] == x)

return true;

else

return false;

• Simplistic idea of hashing

Why simplistic?

What are we ignoring here?

• Discuss

xi

11

Lecture 23: Collisions

Simple hashing fails in the case of a collision:

h(x1) == h(x2), where x1 != x2

• Two distinct keys hash to the same location!

Can we avoid collisions (i.e. guarantee
that they do not occur)?
• Yes, but only when size of the key space, K, is

less than or equal to the table size, M

– When |K| <= M there is a technique called
perfect hashing that can ensure no collisions

– It also works if N <= M, but the keys are known in
advance, which in effect reduces the key space to
N

> Ex: Hashing the keywords of a programming
language during compilation of a program

12

Lecture 23: Collisions

• When |K| > M, by the pigeonhole principle, collisions
cannot be eliminated

– We have more pigeons (potential keys) than we have
pigeonholes (table locations), so at least 2 pigeons
must share a pigeonhole

– Unfortunately, this is usually the case

– For example, an employer using SSNs as the key

> Let M = 1000 and N = 500

> It seems like we should be able to avoid collisions, since
our table will not be full

> However, |K| = 109 since we do not know what the 500
keys will be in advance (employees are hired and fired,
so in fact the keys change)

13

Lecture 23: Resolving Collisions

• So we must redesign our hashing
operations to work despite collisions

 We call this collision resolution

• Two common approaches:

1) Open addressing

 If a collision occurs at index i in the table, try
alternative index values until the collision is resolved

– Thus a key may not necessarily end up in the location
that its hash function indicates

– We must choose alternative locations in a consistent,
predictable way so that items can be located correctly

– Our table can store at most M keys

14

Lecture 23: Resolving Collisions

2) Closed addressing

• Each index i in the table represents a collection of
keys

– Thus a collision at location i simply means that more
than one key will be in or searched for within the
collection at that location

– The number of keys that can be stored in the table
depends upon the maximum size allowed for the
collections

 We will look at examples from both of these
approaches

15

Lecture 23: Reducing the number of collisions

• Before discussing resolution in detail

Can we at least keep the number of collisions in
check?

Yes, with a good hash function

• The goal is to make collisions a (pseudo) "random"
occurrence

– Collisions will occur, but due to chance, not due to
similarities or patterns in the keys

What is a good hash function?

• It should utilize the entire key (if possible) and exploit
any differences between keys

• It should also utilize the full address space of the hash
table

16

Lecture 23: Reducing the number of collisions

Let's look at some examples

• Consider hash function for on-campus Pitt students
based on phone numbers, where M = 1000

– Attempt 1: First 3 digits of number

> H(412-XXX-XXXX) = 412

> Good or bad?

> BAD! First 3 digits are area code and most people in this
area live within a few area codes { 412, 724, etc }

– Better?

> Think about this – what can we do?

> Take phone number as an integer % M

> In effect this is getting the last 3 digits

> Why better? Still only 3 digits!

> For arbitrary 10-digit numbers the last 3 digits don't
have any special designation and tend to be pseudo-
random

Lecture 23: Reducing the number of collisions

• Consider hash function for words into a table of size M

– Attempt 1: Add ASCII values

> Ex: H("STOP")  83 + 84 + 79 + 80 = 326

> Is this good / bad? Let's think about it…

> Problem 1: Does not fully exploit differences in the keys

> Ex: H("STOP") = H("POTS") = H("POST") = H("SPOT")

> Even though we use the entire key, we don't take into
account the positions of the characters

> Problem 2: Does not use the full address space

> Even small words will have H(X) values in the 100s

> Even larger words will have H(X) values well below 1000

> Thus for ex. M = 1000 there will likely be collisions in the
middle of the table and many empty locations at the
beginning and the end of the table

17

Lecture 23: Reducing the number of collisions

– Better?

> Utilize all of the characters and the positions and all of
the table

> How?

> Consider integers and how they differ from each other

> 1234 != 4321 != 2341 != 3412 … etc

> Why are they different?

> Each digit has a different power of 10

> 1234 = 1*103+2*102+3*101+4*100

> 4321 = 4*103+3*102+2*101+1*100

– Can we do something similar for hash values of
arbitrary strings?

> YES!

– Let's first consider this ideally, then we will get more
practical

18

Lecture 23: Reducing the number of collisions

– Integers with given digits in given positions are different
because we have 10 digits and each location is a different
power of 10

– We can apply the same idea to ASCII characters

> We have 256 ASCII characters, so let's multiply each digit
by a different power of 256

– Ex: H("STOP") = 83*2563+84*2562+79*2561+80*2560

– Ex: H("POTS") = 80*2563+79*2562+84*2561+83*2560

> This will definitely distinguish the hash values of all strings

– Ok this will utilize all of the characters and positions, but
what about utilizing all of the table?

> Recall that our table is size M

> Note that these values will get very large very quickly

> So we can take the raw value % M

> This will likely "wrap" around the table many times, and
should utilize all of the locations

19

Lecture 23: Reducing the number of collisions

– Let's now think about how we will do this in practice

> Note how big the numbers will get – very quickly larger
than even a long can store

> If we use an int or even long the values will wrap
and thus no longer be unique for each String

> This is ok – it will just be a collision

> Calculating the values should be done in an efficient way
so that H(X) can be done quickly

> There is an approach called Horner's method that
can be applied to calculate the H(X) values efficiently

– See handout hashCode.java

> We will also look at this during our interactive lecture

20

21

Lecture 23: Good Hashing

• One good approach to hashing:

Choose M to be a prime number

Calculate our hash function as

h(x) = f(x) mod M

• where f(x) is some function that converts x into a
large "random" integer in an intelligent way

– It is not actually random, but the idea is that if keys are
converted into very large integers (much bigger than
the number of actual keys) collisions will occur because
of the pigeonhole principle, but they will be less
frequent

There are other good approaches as well

22

Lecture 23: Linear Probing

• Back to Collision Resolution

Open Addressing

• The simplest open addressing scheme is Linear
Probing

– Idea: If a collision occurs at location i, try (in sequence)
locations i+1, i+2, … (mod M) until the collision is
resolved

– For Insert:

> Collision is resolved when an empty location is found

– For Find:

> Collision is resolved (found) when the item is found

> Collision is resolved (not found) when an empty location
is found, or when index circles back to i

– Look at an example

Lecture 23: Linear Probing Example
Index Value Probes

0

1

2

3

4

5

6

7

8

9

10

23

14

17

25

37

34

16

h(x) = x mod 11

26

1

1

2

2

1

3

5

h(x) = 3

h(x) = 4

h(x) = 4

h(x) = 6

h(x) = 3

h(x) = 1

h(x) = 5

24

Lecture 23: Linear Probing

• Performance

– O(1) for Insert, Search for normal use, subject to the
issues discussed below

> In normal use at most a few probes will be required
before a collision is resolved

• Linear probing issues

– What happens as table fills with keys?

– Define LOAD FACTOR,  = N/M

– How does  affect linear probing performance?

– Consider a hash table of size M that is empty, using a
good hash function

> Given a random key, x, what is the probability that x will
be inserted into any location i in the table?

1/M

25

Lecture 23: Linear Probing

– Consider now a hash table of size
M that has a cluster of C
consecutive locations that are filled

> Now given a random key, x, what
is the probability that x will be
inserted into the location
immediately following the cluster?

– Why?

> The probability of mapping x to a
given location is still 1/M

> But for any i in the cluster C, x will
end up after the cluster

> Thus we have C locations in the
cluster plus 1 directly after it

(C+1)/M

Index Value

filled

filled

filled

filled

filledC
lu

st
er

 o
f

le
n
g

th

C

A
ll

 p
ro

b
ab

il
it

y

m
o
v

ed
 t

o
 t

h
is

 l
o

c

Lecture 23: Linear Probing

• Why is this bad?

– Recall how collisions in LP are resolved

> Collision is resolved found when key is found

> Somewhere within the cluster

> Collision is resolved not found when empty location is
found

> Must traverse the entire cluster

– Clearly as the clusters get longer we need more probes
in both situations, but especially for not found

– As  increases cluster sizes begin to approach M

– Search times will now degrade from Theta(1) to
Theta(M) == Theta(N)

> Note here that Theta(M) == Theta(N) in this case since
our table can hold at most M keys

26

Lecture 23: Reducing Probes

• How to fix this problem of clustering?

Or at least maybe reduce it?

We will discuss next lecture

27

