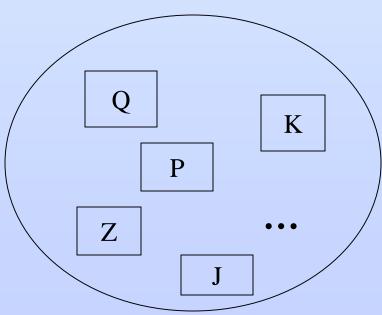
Course Notes for CS 0445 Data Structures

By
John C. Ramirez
Department of Computer Science
University of Pittsburgh

- These notes are intended for use by students in CS0445 at the University of Pittsburgh and no one else
- These notes are provided free of charge and may not be sold in any shape or form
- Material from these notes is obtained from various sources, including, but not limited to, the following:
 - The course instructor
 - ▶ Data Structures and Abstractions with Java, 2nd, 3rd and 4th and 5th Editions by Frank Carrano (and Timothy Henry)
 - Data Structures and the Java Collections Framework by William Collins
 - Classic Data Structures in Java by Timothy Budd
 - Java By Dissection by Pohl and McDowell
 - Java Software Solutions (various editions) by John Lewis and William Loftus
 - Many Oracle Java sites

- Consider the task of searching for an item within a collection
 - Given some collection C and some key value K, find/retrieve the object whose key matches K

K



Lecture 23: Review of Searching Methods

- How do we know how to search so far?
 - Well let's first think of the collections that we know how to search
 - Array/Vector
 - Unsorted
 - > How to search? Run-time?
 - Sorted
 - > How to search? Run-time?
 - Linked List
 - Unsorted
 - > How to search? Run-time?
 - Sorted
 - > How to search? Run-time?

Review of Searching Methods

- So right now we are looking at O(lgN) as our best time for searching
 - Note that the techniques we have looked at so far are doing direct comparisons of the keys
 - Is the key we are looking for equal to the one in the object?
 - For binary search we are also using inequality
- Can we possibly do any better?
 - Perhaps if we use a very different approach
- Before we do this let's define an interface that will facilitate our general searches

- A symbol table or dictionary is an abstract structure that associates a value with a key
 - We use the key to search a data structure for the value
 - These will be separate entities
 - For a given application we may need only the keys or only the values or both
 - We will define our symbol table / dictionary as an interface
 - Idea is that the dictionary specification does not require any specific implementation
 - In fact there are many different ways to implement this

Lecture 23: Dictionary Interface

```
import java.util.Iterator;
public interface DictionaryInterface<K, V>
{
        public V add(K key, V value);
        public V remove(K key);
        public V getValue(K key);
        public boolean contains(K key);
        public Iterator<K> getKeyIterator();
        public Iterator<V> getValueIterator();
        public boolean isEmpty();
        public int getSize();
        public void clear();
} // end DictionaryInterface
```

- Standard Java has a similar interface called Map(K,V)
 - See API

 See complete code and comments in author's file DictionaryInterface.java

Lecture 23: Dictionary Interface

- We could implement this interface using what we already know
 - Have an underlying sorted array
 - Have an underlying linked list
 - Both of these implementations are similar in that the basic search involves direct comparisons of keys
 - In other words, to find a target key, K, we must compare K to one or more keys that are present in the data structure
 - If we change our basic approach perhaps we can get an improvement

Lecture 23: Hashing

- So let's try a different approach
 - Assume we have an array (table), T of size M
 - Assume we have a function h(x) that maps from our key space into indexes {0,1,...,M-1}
 - Also assume that h(x) can be done in time proportional to the length of the key
- Now how can we do an insert and find of some key x?
 - Think about it

Lecture 23: Hashing

Insert

```
i = h(x);
T[i] = x;
Find
i = h(x);
if (T[i] == x)
    return true;
else
    return false;
```

- Simplistic idea of hashing
 - Why simplistic?
 - What are we ignoring here?
 - Discuss



- Simple hashing fails in the case of a collision:
 h(x₁) == h(x₂), where x₁!= x₂
 - Two distinct keys hash to the same location!
- Can we avoid collisions (i.e. guarantee that they do not occur)?
 - Yes, but only when size of the key space, *K*, is less than or equal to the table size, M
 - When |K| <= M there is a technique called
 perfect hashing that can ensure no collisions
 - It also works if N <= M, but the keys are known in advance, which in effect reduces the key space to N
 - > Ex: Hashing the keywords of a programming language during compilation of a program

Lecture 23: Collisions

- When |K| > M, by the pigeonhole principle, collisions cannot be eliminated
 - We have more pigeons (potential keys) than we have pigeonholes (table locations), so at least 2 pigeons must share a pigeonhole
 - Unfortunately, this is usually the case
 - For example, an employer using SSNs as the key
 - > Let M = 1000 and N = 500
 - > It seems like we should be able to avoid collisions, since our table will not be full
 - > However, |K| = 10⁹ since we do not know what the 500 keys will be in advance (employees are hired and fired, so in fact the keys change)

- So we must redesign our hashing operations to work despite collisions
 - We call this collision resolution
- Two common approaches:
 - 1) Open addressing
 - If a collision occurs at index i in the table, try alternative index values until the collision is resolved
 - Thus a key may not necessarily end up in the location that its hash function indicates
 - We must choose alternative locations in a consistent,
 predictable way so that items can be located correctly
 - Our table can store at most M keys

Lecture 23: Resolving Collisions

2) Closed addressing

- Each index i in the table represents a collection of keys
 - Thus a collision at location i simply means that more than one key will be in or searched for within the collection at that location
 - The number of keys that can be stored in the table depends upon the maximum size allowed for the collections
- We will look at examples from both of these approaches

- Before discussing resolution in detail
 - Can we at least keep the number of collisions in check?
 - Yes, with a good hash function
 - The goal is to make collisions a (pseudo) "random" occurrence
 - Collisions will occur, but due to chance, not due to similarities or patterns in the keys
 - What is a good hash function?
 - It should utilize the entire key (if possible) and exploit any differences between keys
 - It should also utilize the full address space of the hash table

Let's look at some examples

- Consider hash function for on-campus Pitt students based on phone numbers, where M = 1000
 - Attempt 1: First 3 digits of number
 - > H(412-XXX-XXXX) = 412
 - > Good or bad?
 - > BAD! First 3 digits are area code and most people in this area live within a few area codes { 412, 724, etc }

– Better?

- > Think about this what can we do?
- > Take phone number as an integer % M
 - > In effect this is getting the last 3 digits
- > Why better? Still only 3 digits!
- > For arbitrary 10-digit numbers the last 3 digits don't have any special designation and tend to be pseudorandom

- Consider hash function for words into a table of size M
 - Attempt 1: Add ASCII values
 - > Ex: H("STOP") \rightarrow 83 + 84 + 79 + 80 = 326
 - > Is this good / bad? Let's think about it...
 - > Problem 1: Does not fully exploit differences in the keys
 - > Ex: H("STOP") = H("POTS") = H("POST") = H("SPOT")
 - > Even though we use the entire key, we don't take into account the positions of the characters
 - > Problem 2: Does not use the full address space
 - > Even small words will have H(X) values in the 100s
 - > Even larger words will have H(X) values well below 1000
 - > Thus for ex. M = 1000 there will likely be collisions in the middle of the table and many empty locations at the beginning and the end of the table

- Better?

- > Utilize all of the characters and the positions and all of the table
 - > How?
- > Consider **integers** and how they differ from each other
- > 1234 != 4321 != 2341 != 3412 ... etc
- > Why are they different?
- > Each digit has a different power of 10
- $> 1234 = 1*10^3 + 2*10^2 + 3*10^1 + 4*10^0$
- $> 4321 = 4*10^3 + 3*10^2 + 2*10^1 + 1*10^0$
- Can we do something similar for hash values of arbitrary strings?
 - > YES!
- Let's first consider this *ideally*, then we will get more practical

- Integers with given digits in given positions are different because we have 10 digits and each location is a different power of 10
- We can apply the same idea to ASCII characters
 - > We have 256 ASCII characters, so let's multiply each digit by a different power of 256
- Ex: $H("STOP") = 83*256^3+84*256^2+79*256^1+80*256^0$
- Ex: $H("POTS") = 80*256^3 + 79*256^2 + 84*256^1 + 83*256^0$
 - > This will definitely distinguish the hash values of all strings
- Ok this will utilize all of the characters and positions, but what about utilizing all of the table?
 - > Recall that our table is size M
 - > Note that these values will get very large very quickly
 - > So we can take the raw value % M
 - > This will likely "wrap" around the table many times, and should utilize all of the locations

- Let's now think about how we will do this in practice
 - Note how big the numbers will get very quickly larger than even a long can store
 - > If we use an int or even long the values will wrap and thus no longer be unique for each String
 - > This is ok it will just be a collision
 - > Calculating the values should be done in an efficient way so that H(X) can be done quickly
 - > There is an approach called Horner's method that can be applied to calculate the H(X) values efficiently
- See handout hashCode.java
 - > We will also look at this during our interactive lecture

- One good approach to hashing:
 - Choose M to be a prime number
 - Calculate our hash function as

$$h(x) = f(x) \mod M$$

- where f(x) is some function that converts x into a large "random" integer in an intelligent way
 - It is not actually random, but the idea is that if keys are converted into very large integers (much bigger than the number of actual keys) collisions will occur because of the pigeonhole principle, but they will be less frequent
- There are other good approaches as well

Back to Collision Resolution

- Open Addressing
 - The simplest open addressing scheme is Linear Probing
 - Idea: If a collision occurs at location i, try (in sequence) locations i+1, i+2, ... (mod M) until the collision is resolved
 - For Insert:
 - > Collision is resolved when an empty location is found
 - For Find:
 - > Collision is resolved (found) when the item is found
 - > Collision is resolved (not found) when an empty location is found, or when index circles back to i
 - Look at an example

Lecture 23: Linear Probing Example

Index	Value	Probes
0		
1		1
2		
3		1
4		2
5		2
6		1
7		3
8		5
9		
10		

|--|

17
$$h(x) = 6$$

25
$$h(x) = 3$$

$$37 \qquad || \quad \mathbf{h}(\mathbf{x}) = \mathbf{4}$$

34
$$h(x) = 1$$

16
$$h(x) = 5$$

26
$$|| h(x) = 4|$$

$$h(x) = x \mod 11$$

Lecture 23: Linear Probing

Performance

- O(1) for Insert, Search for normal use, subject to the issues discussed below
 - > In normal use at most a few probes will be required before a collision is resolved
- Linear probing issues
 - What happens as table fills with keys?
 - Define LOAD FACTOR, $\alpha = N/M$
 - How does α affect linear probing performance?
 - Consider a hash table of size M that is empty, using a good hash function
 - > Given a random key, x, what is the probability that x will be inserted into any location i in the table?

1/M

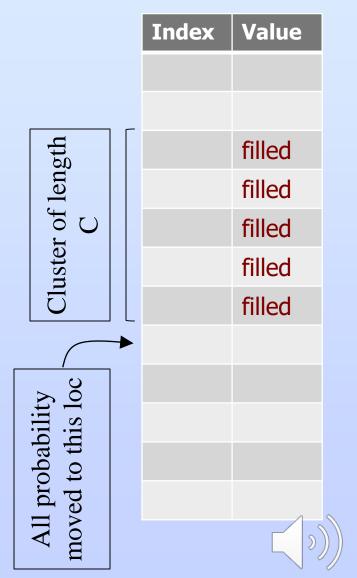
Lecture 23: Linear Probing

- Consider now a hash table of size
 M that has a cluster of C
 consecutive locations that are filled
 - Now given a random key, x, what is the probability that x will be inserted into the location immediately following the cluster?

$$(C+1)/M$$

- Why?

- > The probability of mapping x to a given location is still 1/M
- > But for any i in the cluster C, x will end up after the cluster
- > Thus we have C locations in the cluster plus 1 directly after it



Lecture 23: Linear Probing

- Why is this bad?
 - Recall how collisions in LP are resolved
 - > Collision is resolved found when key is found
 - > Somewhere within the cluster
 - > Collision is resolved not found when empty location is found
 - > Must traverse the entire cluster
 - Clearly as the clusters get longer we need more probes in both situations, but especially for not found
 - As α increases cluster sizes begin to approach M
 - Search times will now degrade from Theta(1) to Theta(M) == Theta(N)
 - > Note here that Theta(M) == Theta(N) in this case since our table can hold at most M keys

Lecture 23: Reducing Probes

- How to fix this problem of clustering?
 - Or at least maybe reduce it?
 - We will discuss next lecture

