

Flexible Instrumentation for Software Dynamic Translation

Naveen Kumar and Bruce Childers

Department of Computer Science
University of Pittsburgh

{naveen, childers}@cs.pitt.edu
http://www.cs.pitt.edu/copa

Abstract
Software dynamic translators have been used for many
purposes, such as dynamic code optimization, profiling,
and security. Many of these applications need to instrument
a program’s binary code to gather run-time information
about the program. Such instrumentation is varied, with
different software dynamic translator applications
requiring different kinds of information. Hence, there is a
need for a flexible mechanism for information gathering
and instrumentation in software dynamic translators. In
this paper, we describe our approach to providing flexible
instrumentation. We also experimentally evaluate our
approach and investigate its overhead and demonstrate its
flexibility for different software dynamic translation
systems.

1. Introduction
In recent years, there have been a number of systems
introduced that dynamically modify and control the
execution of a program. For example, dynamic optimizers
such as Jalapeno [4] and Dynamo [3] apply code
transformations to take advantage of up-to-date information
about the run-time behavior of the program. Other
examples of such software dynamic translators (SDT)
include code security checkers [2, 8], micro-architecture
simulators [13, 14], and program debuggers [19]. SDT
systems typically collect information about the executing
program in order to make decisions about how to control
the program’s execution. For example, program debuggers
may insert instrumentation in the application binary to
collect information about program values. As another
example, dynamic code optimizers generally focus their
optimization efforts on the most frequently executed
portions of the program, which requires instrumentation to
identify hot code segments and traces. In Dynamo,
instrumentation is used for counters that help identify hot
traces for optimization. Similarly, Jalapeno uses counters to
find hot methods for optimization.

To support diverse instrumentation needs in software
dynamic translators, a flexible mechanism is needed for
instrumenting a program at run-time. Such a mechanism
can be configured for a variety of purposes, including
software testing, dynamic optimization, program profiling,
and architecture simulation. There are many considerations

when designing a mechanism for code instrumentation,
including run-time performance and memory overhead,
flexibility to gather different kinds of information and
different durations of time, ability to dynamically insert
and remove instrumentation, and support different
granularities of information gathering. We discuss each
of these requirements below.

First, the instrumentation should have low cost. In an
SDT system, the instrumentation occurs during the run-
time of the program and its cost must be kept low. Also,
same instrumentation might be invoked several times
when the code is executed. It is important to have a low
overhead of the instrumentation, in terms of number of
instructions.

Second, different applications need to gather different
kinds of information by instrumenting the code; hence
the instrumentation system should be easily reconfigured
for different purposes. Also, the instrumentation should
be done in a manner that is independent of the target
architecture to aid in retargeting an SDT system to new
processors and operating systems.

Third, the system should be flexible enough to allow for
different life spans of instrumentation. Instrumentation
that remains in place throughout the execution of the
program is permanent instrumentation. Such
instrumentation could be needed, for instance, when
profiling the program to collect edge counts. In this case,
the run-time overhead of the instrumentation is more
important than the static cost of inserting the
instrumentation. Instrumentation that remains for some
portion of the execution of the program is transient
instrumentation. Transient instrumentation needs to be
removed after some period of time during the execution
of the program. Such instrumentation could be needed,
for instance, when doing path coverage analysis, or when
sampling a program at certain intervals during execution.
For such instrumentation, the static overhead of inserting
the instrumentation may be as important as the run-time
overhead.

Fourth, an instrumentation mechanism should provide
for low cost dynamic insertion and removal of

instrumentation. The mechanism should permit inserting
instrumentation into the executing program to gather new
information at new locations in the program. Similarly,
instrumentation should be removable on-the-fly as the
program executes. To aid in the insertion and removal of
instrumentation, the instrumentation should disturb the
binary program as little as possible. By minimally
impacting the program, it will be easier to quickly insert
instrumentation and recover the original form of the
program when removing instrumentation.

Finally, it should be possible to have several levels of
instrumentation at the same point in the binary program.
For example, if the goal is to be able to profile the program
and collect all edge counts and all function-call counts, we
may need to instrument a single call instruction twice, for
both purposes. The instrumentation mechanism should also
permit different granularities of information gathering.
These levels may include individual instructions, basic
blocks, code traces, call sites, and other levels.

This paper describes a flexible instrumentation mechanism
that satisfies the above requirements. Our approach uses a
trigger-action mechanism for instrumentation. A trigger is
fired when some property of the program is satisfied and an
action is taken when a trigger is fired. As an example,
consider instrumentation for code security checks of
system calls in a software dynamic translator. For system
calls, there can be unsafe conditions (determined by the
security policy being enforced) when the system would
take some appropriate action like terminating the execution
of the program. For this purpose, when using our
mechanism, we can instrument and associate a trigger with
each of these system calls in the program. When the trigger
is hit, it executes code that checks whether the system call
is safe. If it is unsafe, the trigger is fired and an action
routine is called to enforce the security policy.

In this paper, we describe our trigger-action mechanism
and an implementation of the mechanism for the SPARC
architecture and the Solaris 8 operating system. We also
describe the use of the mechanism for applications that
gather varying kinds of information to demonstrate the
flexibility of our approach. We consider three applications:
a hardware cache simulator, a profiler to gather edge
counts, and a profiler to find the working set of a program’s
basic blocks. The overhead of the instrumentation in these
applications is evaluated to investigate the run-time
overhead of our approach.

The organization of the paper is as follows. Section 2
describes the software dynamic translator, Strata, that is
used in this work. Section 3 presents our trigger-action
mechanism, while Section 4 discusses the implementation
of that mechanism. Section 5 presents experimental results.
Section 6 describes related work and Section 7 summarizes
the paper.

2. Software Dynamic Translation
SDT allows modification of an executing program by
inserting new code, modifying some existing code or
controlling the execution of the program in some way.
The organization of an SDT system typically has a
software layer below the executable that takes control of
and modifies the application code. In addition, there is
usually a code-cache in which the SDT keeps the
modified executable (which we call a fragment cache). A
program directly executes within the fragment cache
after being modified.

SDT works by translating blocks of instructions from the
executable program and caching the blocks (after
possibly modifying the instructions) in the fragment
cache. The blocks of instructions in the fragment cache
are called fragments. A fragment is a set of instructions
that begin at a start-of-fragment condition (a target of a
branch or jump) and end with an end-of-fragment
condition (a branch or a jump). The branch instruction
ending a fragment is modified to branch to an exit stub
that returns control to the SDT. The SDT then translates
and caches the target fragment into the fragment cache.
Once a fragment and its successors are inside the
fragment cache, the SDT links them together to avoid
unnecessary context-switches between the SDT and the
application. In this way, once a program and its
fragments have materialized in the fragment cache,
execution is entirely out of the fragment cache.

It is possible to modify the instructions during the
translation phase based on some criteria and then emit
the modified instructions into the fragment cache. This
gives the flexibility of an interpreter although the
program undergoes direct execution. Such modifications
often include code optimizations like partial function
inlining or path-based redundancy elimination.

Another common technique used by software dynamic
translators is to form instruction traces. A trace is a
sequence of instructions on a path. A trace collected on a
hot path and emitted into the fragment cache has the
potential to boost the performance of the program. Such
hot paths dominate program execution time and applying
optimizations such as code re-layout can significantly
improve performance. Traces are important beyond
optimization. For example, in applications of SDT that
need to collect some information from the running
program, collecting the same information from hot traces
may be representative of the whole of the program.

In this work, we use the Strata software dynamic
translator system [1, 17], which is a retargetable and
reconfigurable system. Our work aims to provide a
flexible interface for instrumentation in Strata. Strata is
implemented as a set of target-independent common
services, a set of target-dependent specific services and

an interface through which the two communicate. The
common services in Strata include memory management,
code cache management, a dynamic linker, and a virtual
CPU that mimics the standard hardware
(fetch/decode/execute engines). The target-specific services
are the ones that actually do the dynamic translation.

Strata is designed as virtual machine that sits between the
program and the CPU and translates a program’s
instructions before they execute on the CPU. The Strata
VM is started by a function call from the application binary
which saves the application context and starts translating
and caching the instructions in the application. Such an
infrastructure provides for flexible instrumentation of the
application before it materializes in the fragment cache.

Figure 1 shows the working of the Strata virtual machine.
In this figure, every instruction that is not already cached
goes through different stages in the virtual machine,
namely fetch, decode and translate. During the translate
stage, Strata can instrument the application code and then
write it into the fragment cache. In this work, we provide
an interface in the VM for different mechanisms for
instrumenting the code. This interface is an extension of the
original translate stage, as shown in the figure.

Application Binary

CPU

Dynamic Translator

OS

Context
Switch

Cached?

Finished?

Context
Capture

New
Fragment

Fetch

Next PC

Translate

Decode

New
PC

���������
	 ��
�
�

� ���

����� � �

Application Binary

CPU

Dynamic Translator

OS

Context
Switch

Cached?

Finished?

Context
Capture

New
Fragment

Fetch

Next PC

Translate

Decode

New
PC

���������
	 ��
�
�

� ���

����� � �

Figure 1: Working of the Strata virtual machine

3. Trigger-action Mechanism
The basic idea of our trigger-action approach is to use an
event-driven mechanism that checks for some run-time
property of a program. When that property is identified, a
call back is made to an action that can perform information
gathering and other functions. With our trigger-action
mechanism, we can instrument a program at any point in
the code and at any time during the program’ s execution.

The instrumentation inserted into the program to perform
the property check and call back are called a “trigger-action
pair”. The trigger contains a code property check that can
invoke an associated action, if the property check is
satisfied. For instance, in the example mentioned in Section

1, a property check would test an instruction to check
whether it is a system call and whether the system call is
safe given some security policy on the use of system
calls. In this case, for termination semantics on a security
violation, the action would abort the program’ s execution
with an access violation.

There are two parts to a trigger: a static component and
a dynamic component. The static component is a check
that can be done by an SDT system, like Strata, when
writing instructions into the fragment cache. The
dynamic component verifies a dynamic property of the
code. For example, suppose we want to count all addition
instructions that have a register operand with a zero
value. In this case, the trigger will verify that an
instruction is an addition and that the content of one of
its source registers is zero. If these conditions are
satisfied, the action increments a counter that counts the
number of dynamically executed additions with source
operand value of zero. In this case, Strata can verify that
the opcode for a given instruction is an ADD or ADDI
with a static check when writing instructions into the
fragment cache. If the instruction is an addition, a
dynamic check is inserted to verify that the content of
one of the source operands is zero. Essentially, when
attaching triggers to particular code blocks, the
instrumentation system will verify the static properties
before instrumenting the code. That is, inserting a new
trigger-action pair is guarded by a static check. The
dynamic check is done in the code that is inserted.

Figure 2 shows an operational view of the trigger-action
mechanism. The left part of the figure shows a fragment
cache that has been instrumented at several points. Each
of these instrumentation points takes program control to
one of the dynamic checks shown in the middle. Each
dynamic check can transfer program control to one of the
actions shown on the right side.

Figure 2: Operational view of the trigger-action mechanism

instrumentation

instrumentation

instrumentation

instrumentation

dynamic
check

dynamic
check

action

dynamic
check

action

Notice in the figure that several dynamic checks can be
shared by different instrumentation points in the cache.
Likewise, there can be several actions that can be shared by
different dynamic checks. Such sharing helps to reduce the
memory cost of the triggers and actions.

Although it is not shown in the figure, a single
instrumentation point could invoke several dynamic checks
and their corresponding actions. We call such checks
compound dynamic checks, since they essentially combine
several individual checks into one check that does multiple
things. These compound checks help to reduce the
performance and memory overhead of doing several checks
and actions at some point in the code.

4. Trigger-Action Mechanism for Strata-SPARC
We have implemented our trigger-action mechanism on the
SPARC platform using Strata [1, 17]. We first describe the
basic approach and implementation of the static and
dynamic checks for Strata-SPARC. Then we describe three
different implementations of the dynamic check. Finally,
we describe the implementation of the action.

4.1 Implementing the Static and Dynamic Checks
The static check is easy to implement in Strata because of
the way the Strata VM is organized. We can add static
checks to the translate stage in Strata so that they are done
before any code is written into the fragment cache. When
the translated code satisfies the static property being
checked, the code is instrumented for the dynamic check
(and the action). This instrumentation is performed using a
fast breakpoint. A fast breakpoint [16] replaces an
instruction by a jump instruction which takes the flow of
control to a piece of code that may monitor or modify the
state of the machine or the program.

Figure 3: Dynamic check with a fast breakpoint

Figure 3 shows how we use fast breakpoints for dynamic
checks. As the figure shows, the code for the breakpoint
(the breakpoint handler) consists of instructions that save
the context of the application, make a call to a boolean
function to do the dynamic check, restore the context of the
application, execute the original instruction and then jump
to the next instruction to be executed in the fragment cache.
The context of the application consists of the set of general
purpose registers and other machine registers such as the

condition code registers and y registers on SPARC. We
need to save the context of the application before
invoking the dynamic check/action, so that we do not
modify any part of the application’ s context from within
the dynamic check/action.

We associate a unique breakpoint handler for every
breakpoint because each breakpoint handler has to
execute a unique instruction from the application (e.g.,
instruction1 in Figure 3) and return to a distinct location
in the fragment cache (which is unique to every
breakpoint). Our system allocates space in the fragment
cache to hold the breakpoint handler. This space is
typically located immediately after the fragment. That is,
when fragments are created and breakpoints inserted, the
handlers are inserted at the end of the fragment being
instrumented. Likewise, when adding dynamic checks
on-the-fly into already existing fragments, space is
allocated in the fragment cache to hold the breakpoint
handler. To preserve the code layout of the fragment
cache, the breakpoint handlers can be emitted into a
separate code cache.

 (a) (b)

Figure 4: Fragments in the fragment cache without
instrumentation (a) and with instrumentation (b). The
middle fragment is being instrumented.

Figure 4(a) and 4(b) shows the structure of fragments in
the fragment cache without and with the breakpoint. We
insert the breakpoint handler at the end of each fragment
as shown in Figure 4(b).

For instrumentation techniques that modify the code in
the fragment cache, we have to ensure that the machine’ s
data and instruction caches are consistent (in a way
similar to self modifying code). On some architectures
(SPARC and MIPS), we have to flush a portion (or all)
of the instruction cache. On other architectures (Intel’ s
x86), the hardware provides mechanisms that enforce
consistency between data and instruction caches.

4.2 Types of Instrumentation
To support different types of information gathering, our
trigger-action mechanism has different implementations

branch

context save
call
context restore
instruction1
branch

instruction

instruction1

instruction

instruction

dyn check

if (dyn_check == 1)
 call action

 branch X

 Fragment

 …
 instruction
 …
 trampolines
 …

X: breakpoint handler
 …

 Fragment

Fragment

…
instruction
…
trampolines
…
…

Fragment

of dynamic checks. These implementations differ in the
way in which instrumentation is left in place in the
application and removed. Transient instrumentation
removes a dynamic check as soon as the dynamic check is
executed (“hit”), while permanent instrumentation leaves
the dynamic check in place until it is explicitly removed by
some action. Coupled instrumentation inserts and removes
dynamic checks across two fragments in the fragment
cache. Each of these implementations are described below.

Transient instrumentation: Figure 5 shows this kind of
instrumentation. For this kind of instrumentation we
replace the instruction that is to be instrumented by a jump
instruction that transfers control to the breakpoint handler.
The breakpoint handler has code for saving the context and
conducting the dynamic check. Just before the application
context is restored, the breakpoint handler replaces the
instruction back in its original location. After this, control
is transferred to the instruction where the breakpoint was
hit. If the breakpoint is implemented in this way, it removes
itself after one hit. We can use this approach for transient
breakpoints that need to be removed immediately. This
approach is inexpensive compared to the other approach in
which we need to remove the breakpoints explicitly
(discussed below). In our current implementation, the
breakpoint code remains unless there is a flush of the
fragment cache.

Figure 5: A fragment with transient instrumentation before
the breakpoint has been hit (on the left) and the same
fragment after the breakpoint has been hit.

Permanent instrumentation: Figure 3 shows this
implementation. This approach is similar to the previous
one, except that we execute the instruction displaced during
instrumentation in the breakpoint handler itself.

Figure 6 shows the implementation for the case when the
instrumented instruction is a branch. In this case, we move
the delay slot instruction to the breakpoint handler as well.
Thus, we execute the delay slot instruction in the delay slot
of the original branch instruction inside the breakpoint
handler to preserve the semantics of the branch. The offset
of PC-relative branch instructions are modified when

copied into the breakpoint handler to the correct taken
target location. The new not-taken target (the instruction
following the instruction in the delay slot) is an
unconditional branch instruction that branches to the
instruction following the original delay slot instruction in
the fragment. This target is the original not-taken target.

Figure 6: Permanent instrumentation when the
instrumented instruction is a branch.

If we need to install a breakpoint at an instruction in the
delay slot of a branch, we instrument the branch itself.
We benefit from the fact that values in the general
purpose registers remain the same while executing either
the branch instruction or the instruction in the delay slot.
In case of annulled branches, we look at the condition
codes before invoking the dynamic check. The dynamic
check is only invoked if the branch is going to be taken

Figure 7: The removal of a breakpoint when the
instrumented instruction was a non-branch instruction
(left) and the same when it was a branch instruction (right).

Removing the instrumentation involves copying back the
instruction to its original location in the fragment cache
as shown in Figure 7. The removal of instrumentation is
easy because in the code for the breakpoint handler we
keep the original instruction at the same offset from the

 …
Y: instruction1
 …
 …
 trampolines

…
 …
X: save context
 function call
 replace instruction1
 restore context
 branch Y

 …
Y: instruction1
 …
 …
 trampolines
 …
 …

X: save context
 function call
 replace instruction1
 restore context
 branch Y

 branch X

 …
 branch instruction1

 delay slot instruction1

Y: …
 trampolines
 …
 …
X: save context
 function call
 restore context
 branch instruction1
 delay slot instruction1
 branch Y

 ba, a X

 …
 ba, a X

Y: …
 trampolines
 …
 …
X: save context
 function call
 restore context
 instruction1
 branch Y

instruction1

 …
 ba, a X

 delay slot instruction1
 Y: …
 trampolines
 …
 …
X: save context
 function call
 restore context
 branch instruction1
 delay slot instruction1
 branch Y

branch
instruction1

start of the code. In the case when the original instruction is
a branch, the instrumentation moves the delay slot
instruction to the breakpoint handler as well. However, we
still need to move only the branch instruction. This is
because the control transfer, to the breakpoint handler,
happens by means of a branch-always-annulled instruction.
So, the delay slot instruction is duplicated (it is present in
the fragment at its original location and inside the
breakpoint handler). The instruction in the delay slot of a
branch-always-annulled never gets executed, so this
duplication does not have any computational effect. Figure
7(a) shows the case when the instrumented instruction is
not a branch and Figure 7(b) shows the case when it is a
branch instruction.

Coupled instrumentation: This type of instrumentation is a
combination of the two approaches above and is shown in
Figure 8. The figure shows that we replace an instruction
by a jump instruction, taking control to the breakpoint
handler. The breakpoint handler contains code that copies
back the original instruction, but instruments the following
instruction in the fragment to take control to another
breakpoint handler. Once control reaches the other
breakpoint handler, it simply re-installs the first breakpoint
and removes the current one. The advantage of this
approach is that it is easier to remove a breakpoint once it
has been placed. All that is needed to be done is that the
second breakpoint handler should not re-instrument the
first instruction.

Figure 8: A fragment with coupled instrumentation. The
breakpoint handlers are located at P and Q. The fragment
before the breakpoints are hit is shown on the left. The same
fragment when the breakpoint at location X has been hit; at
this time, the breakpoint handler 1 has instrumented
instruction2. After both the hits of the breakpoints, the
fragment looks like the one on the left.

However, when a branch instruction is to be instrumented,
this technique is more complicated. In this case, the first

breakpoint handler needs to instrument the instruction in
the delay slot, and because we insert the fast breakpoint
at the branch for delay slot instructions, we would
instrument the same branch instruction again. To avoid
this problem, we instrument the target of the branch.
When the branch is hit and the breakpoint is taken, we
know the target of the branch and can place the second
breakpoint at the target instruction. When the second
breakpoint is taken, its breakpoint handler re-inserts the
first breakpoint and removes the current one. Hence, the
instrumentation is applied across two different fragments
in contrast to the previous two techniques.

If the instrumentation needs to remain for a substantial
number of hits (or is permanent), the cost of this
technique is more than that of the permanent breakpoints.
This technique involves twice the number of context
saves and restores than the permanent instrumentation.

4.3 Implementing the Action
The action is a high-level routine that the system should
call when the trigger fires. It is implemented in an
architecture independent fashion as a high level function
that is called when the dynamic check is satisfied. There
is only one instance of the action, although it may be
shared by multiple dynamic or compound checks.

The action function is called in the context of the
dynamic check. The dynamic check saves the entire
application context before invoking the action and
restores it before transferring control back to the
application. Hence, the action is guaranteed not to affect
the context of the executing program. The default
behavior of the action is to return to the dynamic check.

5. Experiments
We implemented our trigger-action mechanism in Strata-
SPARC and three different uses of our technique. First,
we implemented a hardware cache simulator that
simulates the instruction and data cache. Second, we
implemented a profiler that collects edge counts through
the execution of the program. Third, we implemented a
system that collects the working set of a program.

Our experiments were run on a lightly loaded 500 MHz
UltraSparc IIe workstation with 256 MB of RAM,
running Solaris. We measured the memory and CPU
overhead of the trigger-action system. To measure the
cost incurred by our system in a real application, we
compared the performance of the SPEC2000 benchmarks
with instrumentation and the performance of running
them with Strata-SPARC without instrumentation.
Cost of instrumentation: All the instrumentation
techniques have overhead to save and restore the context
of the application. They also have the function call
overhead for the triggers and the actions. To compute the

 …
 X: instruction1

 Y: instruction2
 …
 trampolines
 …
 P: save context
 function call
 restore context
 replace instruction1
 instrument instruction2
 branch Y
 Q: save context
 replace instruction2

 instrument instruction1
 restore context
 branch Y

ba, a P

 …
 X: instruction1

 Y: instruction2
 …
 trampolines
 …
 P: save context
 function call
 restore context
 replace instruction1
 instrument instruction2
 branch Y
 Q: save context
 replace instruction2

 instrument instruction1
 restore context
 branch Y

ba, a Q

memory overhead of instrumentation, we counted the
number of instructions required per instrumentation point
for each of the three techniques.

To compute the CPU overhead, we wrote a program with a
tightly-bound loop iterating for 100 million times and
instrumented each of the fragments in the program exactly
once. For the cost of instrumentation, we do not count the
time taken inside the triggers and actions, since they are
application dependent. Hence, we do not have any checks
at the trigger, and hence no action is invoked. We used all
three instrumentation techniques and measured the run-
time overhead of an individual instrumentation point.

In the case of transient instrumentation, instrumentation
was removed after one hit of the breakpoint. To measure
the cost of the instrumentation, we did not link the
fragments in the fragment cache of Strata. This ensures that
Strata gains control of the program after each fragment is
executed and can re-instrument every fragment before it is
executed. We made sure not to link the fragments in the un-
instrumented program as well, while computing the
overhead. The results of this experiment are shown in
Table 1.

 Num. Instructions Time
Transient 71 660 ns
Permanent 53 640ns
Coupled 166 840ns

Table 1: Memory and CPU overhead of the three
instrumentation techniques

Most of the expense of the instrumentation comes from the
overhead of saving and restoring the program context. A
save or a restore involves 21 instructions each and the
overhead of a dummy call to the trigger and action is 7
instructions. The control transfers to and from the
breakpoint handler take us 4 instructions and the cost of
emitting code at run-time (for transient and coupled
instrumentation techniques) is 14 instructions for the first
instruction and 5 for each additional instruction. When
doing the transient and coupled instrumentation, we also
have to flush the machine cache.

Although the SPARC has register windows that can save
and restore 24 registers with one instruction, the context
switch must save the global registers and some machine
registers like the condition code and y registers. One
possible way to improve the context switch performance is
to do a partial context save and restore, if the registers
needed by the dynamic check and action are known. On
some other architecture, where register windows are not
available, such an approach may be essential for
performance. Such partial context switches can also help
on the SPARC when there are window spills and refills
(i.e., the window is saved or restored from memory).

From Table 1, the cost of instrumentation is very high
compared to the number of instructions executed because
of the presence of several branch/jump/call instructions
(which ranged from 5 in the permanent instrumentation
to 9 in the coupled instrumentation). In transient and
coupled instrumentation, the flush instruction is used to
flush the hardware cache, which can hurt performance.
From the figure, it appears that permanent
instrumentation is the least expensive instrumentation
technique. However, the other techniques can have lower
cost, depending on how often the instrumentation needs
to be removed.

Hardware cache simulation: The first application where
we used our instrumentation approach was a hardware
cache simulator [1]. For this purpose, we instrumented
the first instruction of each fragment and every load and
store instruction. Since our system inserts the
instrumentation at fragment creation time, it is possible
to make a single call to the instruction cache simulator
per fragment with the base address of the fragment in the
application binary and the number of instructions in the
fragment as arguments. The simulator can simulate the I-
cache for each of the instructions in that fragment with
this information. For the D-cache, we instrumented each
load and store instruction. The static part of the trigger
checked whether an instruction is a load or a store for the
data cache simulation. The static check always returned
true for the instruction cache simulation. For this
application, the dynamic part of the trigger made a call to
the action to send a memory reference to the cache
simulation (for the instruction or data cache). The action
routines also computed the effective address for the
memory reference.

0

20

40

60

80

100

120

mcf tw olf vortex vpr gzip

S
lo

w
do

w
n

Strata

Breakpoints

Trigger and Action

Figure 9: Slowdown in Cache simulation experiments

Figure 9 shows the breakdown of the slowdown for five
SPEC2000 benchmarks. The run-time for each of the
benchmarks has been normalized to the run-time of the
application without any instrumentation. We see that
most of the overhead comes from the action (the
dynamic check is lightweight in this case). The fast
breakpoints account for the next biggest part of the run-
time.

Profiling edge counts: For another application, we needed
to profile the program to find the edge counts of the
fragments in the fragment cache. Any two fragments that
execute successively constitute an edge. We wanted to
collect such a profile using the SDT system to change the
layout of the code in the fragment cache in Pettis-Hansen
style [18]. For this purpose, we needed to have one
instrumentation point per fragment and keep the
instrumentation permanently. We ran the same set of
benchmarks as above with and without the instrumentation
and measured the cost of the instrumentation.

For this experiment, the static check looked for an
instruction that is the first instruction in the fragment. The
dynamic check always called the action. The action did a
hash lookup for the current edge and inserted a new edge if
the hash lookup failed or incremented a count if it
succeeded. Figure 10 shows the breakdown of costs
incurred in this experiment.

0

2

4

6

8

10

12

14

16

18

mcf tw olf vortex vpr gzip

S
lo

w
do

w
n Strata

Breakpoints

Trigger and Action

Figure 10: Slowdown in block placement experiments

Again, this figure demonstrates that action accounts for the
biggest part of the run-time overhead. In this case, the
slowdown of the program is not as high as in cache
simulation. This is because cache simulation involved a lot
more instrumentation points than this experiment, as every
load and store instruction in the program was instrumented
in the former case. In this experiment gzip had the most
overhead because it had more hits of the breakpoints than
the other benchmarks.

Collecting the working set: For another application, we
needed to profile a program in order to collect the set of
fragments that are temporally close during execution. We
wanted to find out the optimal size of the fragment cache in
Strata for every application. This time, we needed temporal
information, which would be a lot of data, so we collected
the information via sampling the execution of the program.
We sampled 10 thousand fragments for every 10 million
fragments that were executed.

In this case, the static check of the trigger involved
checking for an instruction being the first instruction in a
fragment. The dynamic check of the trigger verified that we
are in sampling mode; that is, we have executed at least 10
million fragments without sampling and we do not have
more than 10 thousand edges in the current sample. The

action saved the ID of the current fragment (in sampling
mode) and incremented a counter for the number of
fragments executed (in sampling and non-sampling
modes). We ran the same set of benchmarks, which are
shown in Figure 11.

0

1

2

3

4

5

6

7

8

mcf tw olf vortex vpr gzip

S
lo

w
do

w
n

Strata

Breakpoints

Trigger and Action

Figure 11: Slowdown in working set experiment

The overhead of the trigger-action system is the lowest
for this application. The reason is that the action in this
case is very simple. Most of the time, the action involves
incrementing a counter. The disparity in the slowdown
incurred, once again, depends on how many times the
breakpoints are hit. Although the number of hits to the
breakpoint in this case and in the previous case (Figure
11) is exactly the same, the trends in the two figures are
slightly different. This is due to the fact that the previous
experiment involved a hash lookup in the action routines,
which would incur a variable amount of cost depending
on the number of conflicts in the hash table. This
experiment shows that our infrastructure can support
different kinds of information gathering including
actions whose behavior changes with time.

6. Related Work
Instrumentation techniques have been used in software
dynamic translation systems for a number of purposes
including dynamic optimizations [3, 4, 5, 6], software
security purposes [2, 8], binary translation [7], and code
monitoring [9]. In all of the above systems, instrumented
code is “hard-coded” into the system. In Dynamo [3], the
instrumentation happens in the interpreter and once the
code has been emitted to the fragment cache, new
instrumentation inside the fragment cache would involve
flushing the cache. Walkabout [7] works in a similar
manner. In the case of Dynamo RIO [5, 6, 8],
instrumentation is typically at the edge of basic blocks;
when it is done inside a basic block (while sandboxing a
system call), removing the instrumentation requires
flushing the fragment cache. The DELI system [9] is
similar. In Jalapeno [4], yield points are instrumented at
method prologues and loop back edges. Adding new
yield points in such a system would be difficult and
removing the existing ones would also be difficult.

The concept of fast breakpoints [16] was introduced by
Kessler. In that work, the author used the technique that

we referred to as permanent instrumentation. The fast
breakpoints were not applied in a flexible manner and there
was no general infrastructure for doing such
instrumentation.

The code modification systems Vulcan [10] and Dyninst
[11] used a technique similar to our technique in order to
instrument a running program. They made use of fast
breakpoints to instrument the binary. However, both of
these systems are built for very specific purposes and to the
best of our knowledge did not have retargetability or
reconfigurability in mind. The Vulcan system was designed
for distributed systems to do program transformations and
optimizations. The dyninst work was meant for
performance monitoring of parallel systems. In [12], an
instrumentation system was implemented for monitoring,
debugging and profiling OS kernels.

7. Summary
In this paper, we presented a flexible instrumentation
approach for software dynamic translators. Our approach
uses a trigger-action mechanism that applies static property
checks during code generation and dynamic property
checks during code execution. An associated action can be
invoked when a property is satisfied to gather information
about the executing program. In the paper, we showed
three different mechanisms for instrumentation and
compared their memory and performance costs. We also
showed three applications of information gathering to
demonstrate the flexibility of our approach to supporting
different instrumentation needs.

References

[1] K. SCOTT, N. KUMAR, S. VELUSWAMY, B.
CHILDERS, J. DAVIDSON, M.L. SOFFA.
Reconfigurable and Retargetable Software
Dynamic Translation, In Proceedings of the First
Annual IEEE/ACM International Symposium on
Code Generation and Optimization. San Francisco,
California, March 2003.

[2] K. SCOTT, AND J. DAVIDSON. Safe Virtual
Execution Using Software Dynamic Translation, In
Proceedings of the 2002 Annual Computer Security
Application Conference, Las Vegas, Nevada,
December 9-13, 2002.

[3] BALA, VASANTH, E. DUESTERWALD, AND S.
BANERJIA. Dynamo: A Transparent Dynamic
Optimization System. Proc. of the ACM SIGPLAN
'00 Conference on Programming Language Design
and Implementation, 2000, pp. 1-12

[4] M. ARNOLD, S. FINK, D. GROVE, M. HIND,
AND P. SWEENEY. Adaptive optimization in the
Jalapeno JVM. In Proceedings of the 2000 ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages & Applications

(OOPSLA '00), pages 47--65, Oct. 2000.
[5] D. BRUENING, E. DUESTERWALD, AND S.

AMARASINGHE. Design and implementation of
a dynamic optimization framework for Windows.
In 4th ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-4), December
2000.

[6] D. BRUENING, T. GARNETT AND S.
AMARASINGHE. An Infrastructure for Adaptive
Dynamic Optimization. In Proceedings of the First
Annuak IEEE/ACM International Symposium on
Code Generation and Optimization, San
Francisco, California, pages 265-275, March 2003

[7] C. CIFUENTES, B. LEWIS, AND D. UNG.
Walkabout - a retargetable dynamic binary
translation framework. Technical Report TR2002
-106, Sun Microsytems Laboratories, Palo Alto,
CA 94303, January 2002.

[8] V. KIRIANSKY, D. BRUENING, AND S.
AMARASINGHE. Secure Execution Via
Program Shepherding. In 11th USENIX Security
Symposium, August 2002.

[9] G. DESOLI, N. MATEEV, E. DUESTERWALD,
P. FARABOSCHI, AND J. FISHER, DELI: A
New Runtime Control Point. Proc. of MICRO-35,
Nov. 2002.

[10] A. SRIVASTAVA AND A. EDWARDS. Vulcan:
Binary Transformation in a Distributed
Environment. Microsoft Research Tech. Rpt.
MSR-TR

[11] J. HOLLINGSWORTH, B. MILLER AND J.
CARGILLE. Dynamic Program Instrumentation
for Scalable Performance Tools. SHPCC,
Knoxville Tennessee, May 1994.

[12] A. TAMCHES AND B. MILLER. Fine-Grained
Dynamic Instrumentation of Commodity
Operating System Kernels. Proceedings of the
Third Symposium on Operating Systems Design
and Implementation (OSDI '99), pp. 117-130.
New Orleans, LA, February 1999. USENIX.

[13] R. CMELIK AND D. KEPPEL. Shade: A fast
instruction-set simulator for execution profiling.
Technical Report 93-06-06, Department of
Computer Science and Engineering, University of
Washington, June 1993.

[14] E. WITCHEL AND M. ROSENBLUM. Embra:
fast and flexible machine simulation. In
Proceedings of the 1996 SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, Philadelphia, May, 1996.

[15] E. SCHNARR. Applying Programming Language
Implementation Techniques to Processor
Simulation. PhD thesis, University of Wisconsin,
Madison, 2000.

[16] P. KESSLER. Fast Breakpoints: Design and
Implementation. In Proceedings ACM

SIGPLAN'90 Conf. on Programming Languages
Design and Implementation, pages 78-84, 1990.

[17] K. SCOTT AND J. DAVIDSON. Strata: A Software
Dynamic Translation Infrastructure, In Proceedings
of the IEEE 2001 Workshop on Binary Translation,
Barcelona, Spain, September 8, 2001

[18] K. PETTIS AND R. HANSEN. Profile guided code
positioning. Proc. ACM SIGPLAN'99 Conf. on
Programming Languages Design and
Implementation, pages 16-27, June 1990.

[19] C. JARAMILLO, R. GUPTA, M. L. SOFFA.
FULLDOC: A Full Reporting Debugger for
Optimized Code. In Proceedings of Static Analysis
Symposium, 2000

