
Computer Science Department, University of Pittsburgh, Technical Report TR–03–102, September 2003

1

Abstract

Embedded software is becoming more flexible and adapt-
able, which presents new challenges for management of
highly constrained system resources. Software dynamic
translation is a technology that has been used to enable
software malleability at the instruction level for dynamic
code optimizers, security checkers, and binary translators.
In this paper, we study the feasibility of using software
dynamic translation to manage program code storage in
embedded systems. We explore to what extent code com-
pression can be incorporated in a purely software infra-
structure to reduce program storage requirements, while
minimally impacting run-time performance and memory
resources. We describe two approaches for code compres-
sion, called full and partial image compression, and evalu-
ate their compression ratios and performance in a software
dynamic translation system. We demonstrate that code
decompression is indeed feasible in a software dynamic
translator. 

1 Introduction

Embedded software is becoming considerably more
flexible and agile with the introduction of techniques for
code adaptivity, such as dynamic code optimization, binary
translation of one instruction set to another, code partitions,
downloadable software and code updates, and remote com-
putation and compilation servers. One form of adaptivity
controls, manipulates and modifies the dynamic execution
of a program with software dynamic translation (SDT).
Dynamic optimizers, such as Dynamo [1], use SDT as their
infrastructure. Other systems such as IBM’s DAISY and
HP’s DELI [4] binary translators and the Dynamo/RIO code
security checker [7] use SDT to enable software adaptivity. 

As embedded software has become more adaptive, there
has also been a demand for more efficient and resource-
aware techniques to meet stringent memory, performance,
and energy requirements. One way that these requirements
can be balanced is through the use of compiler approaches.
There have been compiler techniques proposed for manag-
ing performance, code size and energy requirements,

including optimizations that minimize dynamic power con-
sumption and static leakage, code and data memory foot-
print sizes, and trade-offs between performance and energy
consumption.

While software adaptivity and resource management
have been investigated independently with SDT and com-
piler techniques, there has been less work on integrating
them. In this paper, we look at a specific instance of how to
integrate software adaptivity with management of system
resources. In particular, we investigate how to integrate
management of code memory in a software dynamic trans-
lator using code compression to reduce an application’s
code storage and memory footprint. The binary is decom-
pressed on-the-fly by SDT as the application executes to
ensure that only needed code is decompressed and the code
memory footprint is kept small. Past approaches incorpo-
rated code decompression at the hardware level. Such hard-
ware approaches have very good performance because the
decompressor can be incorporated into the memory hierar-
chy off the critical path of the instruction fetch. 

In our case, the decompressor is implemented entirely in
software as part of the SDT system. Such an approach with
SDT is more flexible than a hardware based solution
because it allows the decompressor to be changed. Unlike
other software approaches, our technique decompresses
only instructions that are very likely to execute, which helps
to reduce the run-time overhead of decompression. The
decompressor can even be tailored to a specific application
to get the best compression ratio and lowest overhead. The
decompressor can also be integrated into a SDT system
itself. For instance, a binary translator could translate com-
pressed PowerPC instructions into ARM instructions. How-
ever, because the decompressor is implemented entirely in
software, it can have a large performance penalty, if
invoked too often. Likewise, SDT systems typically have
memory buffers to hold translated instructions, which can
offset benefits to image compression. Thus, the challenge
that we investigate is whether code compression can be effi-
ciently incorporated in SDT without harming memory foot-
print and performance. 

We consider decompression schemes for SDT that trade-
off the compressed image size (i.e., the compression ratio)

Compact Binaries with Code Compression in a Software Dynamic Translator

Stacey Shogan and Bruce R. Childers

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
{sasst118, childers}@cs.pitt.edu



Computer Science Department, University of Pittsburgh, Technical Report TR–03–102, September 2003

2

and the run-time performance of decompression. In these
schemes, the program binary is decompressed based on
execution paths, which ensures that only those instructions
that will actually execute are decompressed. The first
approach compresses the whole binary and decompresses
those code segments that are accessed at run-time. The sec-
ond approach keeps the most frequently used code as
uncompressed instructions and the least frequently used
code as compressed instructions. We show that full image
compression can be beneficial when memory is not tightly
constrained, while partial image compression achieves
good compression and low run-time overheads for con-
strained memory sizes. 

2 Framework

The framework and infrastructure for our work includes
a target embedded system with external storage, a software
dynamic translator, and a code compressor/decompressor. 

2.1 Target Embedded System

We focus on embedded systems that store program
binaries in external FLASH or other storage that has a high
access latency compared to on-chip SRAM. Our target
architecture stores a program in FLASH and executes it in
on-chip SRAM with memory shadowing. Traditional
memory shadowing copies the entire binary to the shadow
memory where it executes; in this work, the binary is incre-
mentally loaded and decompressed into a translation buffer
in shadow memory based on execution paths. The program
executes directly from the translation buffer to achieve
high performance. Although we focus on systems with
external FLASH, our approach can also be used in devices
that execute programs directly from FLASH with a small
scratchpad memory for the translation buffer.

Our goal is to minimize the memory footprint of pro-
grams in external storage and to reduce the relative cost of
loading the program from external storage. Because a com-
pressed program has a smaller code footprint and fewer
memory fetches are needed to copy the program to shadow
memory (each fetch gets more information with compres-
sion) than an uncompressed program, code compression
with SDT effectively manages storage requirements and
can reduce the number of fetches to external storage [9].
However, the memory footprint and behavior of the trans-
lation buffer must be considered. The software dynamic
translator must provide a mechanism for managing the
translation buffer so old code segments that are no longer
needed can be evicted from the translation buffer.

2.2 Software Dynamic Translation

SDT can affect an executing program by inserting new
code, modifying some existing code, or controlling the
execution of the program in some way. The organization of
a typical SDT system has a software layer below the exe-
cutable that controls and modifies the program code. There
is usually a translation buffer in which SDT keeps the mod-
ified executable, called a “fragment cache”. A program
executes directly in this cache after being modified. 

We use the reconfigurable and retargetable Strata soft-
ware dynamic translation system, which supports many
SDT applications, such as dynamic optimization, safe exe-
cution of untrusted binaries, and program profiling [11]. It
is available for many platforms, including SPARC/Solaris
9, x86/Linux, MIPS/IRIX, and MIPS/Sony Playstation 2. 

Figure 1 shows the structure of Strata, which is arranged
as a virtual machine (VM) that sits between the program
and the CPU. The VM translates a program’s instructions
before they execute on the CPU. The VM mimics the stan-
dard hardware with fetch, decode, translate and execute
steps. Fetch loads instructions from memory, decode
cracks instructions into their individual fields, and translate
does any modifications to the instructions as they are writ-
ten into the fragment cache. The translate step is the point
at which the code can be modified. For example, in a
binary translator, translate would convert one instruction
set into another, or a code security checker might insert
instrumentation to enforce policies on the use of operating
system calls. The execute step occurs when control is
returned to the binary in the fragment cache. 

The Strata VM has a set of target-independent common
services, a set of target-dependent specific services, and an
interface through which the two communicate. The com-
mon services in Strata include memory management, code
cache management, a dynamic linker, and the virtual CPU.
The target-specific services are the ones that do the

Figure 1: Strata Virtual Machine

Application Binary

Operating System

CPU

Context
Capture

New
PC

Context
Switch

Cached? New
Fragment

Fetch

Decode

Translate

Next PC

Dynamic Translator

Finished?



Computer Science Department, University of Pittsburgh, Technical Report TR–03–102, September 2003

3

dynamic translation of instructions and support many dif-
ferent SDT applications. A code decompressor can be
incorporated as a target-independent service and integrated
with the fragment cache management, which makes the
decompressor transparent to the rest of the SDT system.

Strata works by translating blocks of instructions from
the executable program and caching the blocks (after possi-
bly modifying the instructions) in the fragment cache. The
blocks of instructions in the fragment cache are called frag-
ments. A fragment is a set of uncompressed instructions
that begin at a target of a control transfer instruction and
end at a branch or jump instruction. A fragment does not
necessarily correspond to a basic block since some code is
inlined (e.g., target blocks of unconditional branches) and
some branch targets are unknown. The branch instruction
ending a fragment is modified to branch to an exit stub (a
“trampoline”) that returns control to the translator. In this
way, the SDT layer gets control of the application after
every fragment executes. The target fragment of a control
transfer is translated and cached in the fragment cache.
Once a fragment and its successors are inside the fragment
cache, the translator links them together to avoid unneces-
sary context-switches between the translator and the appli-
cation. Hence, once a program’s fragments are in the
fragment cache, execution is entirely out of the fragment
cache on uncompressed instructions. 

Software dynamic translators often operate on instruc-
tion traces, which is a sequence of fragments on an execu-
tion path. Such traces formed for hot paths dominate
program execution time and applying optimizations, such
as instruction cache code re-layout, can significantly
improve performance. Traces are important beyond optimi-
zation for code compression/decompression. We can use
traces as the granularity for compression to get locality
benefits during decompression. 

2.3 Code Compression

In our approach, the code decompressor is incorporated
as a module in Strata’s fetch step. Such a modular structure
allows the decompression algorithm to be changed and tai-
lored to an application. To demonstrate the benefit of path-
based decompression in a SDT system, we implemented a
decompressor in Strata based on IBM’s CodePack com-
pression/decompression algorithm, which achieves com-
pression ratios of 50-60% [6]. CodePack is a low overhead
scheme that uses small dictionaries to map compressed
codewords to their uncompressed equivalent. There is also
a table that maps program addresses (in the uncompressed
image) to positions in the compressed binary. 

3 Code Decompression with SDT

In this section, we first describe how decompression can
be incorporated in Strata. We then discuss two approaches
that permit trade-offs between the compression ratio and
the overhead of decompression. 

3.1 Integrating the Code Decompressor

To decompress a binary at run-time, a decompression
engine can be incorporated in the fetch step of a SDT.
Fetch reads compressed instructions from FLASH memory
and returns uncompressed instructions to the SDT’s
instruction decoder. Figure 2 shows how we incorporate
CodePack into the fetch step of Strata. 

Fetch is invoked with a target address from which to
return an instruction in the uncompressed binary. Fetch
maintains a buffer of uncompressed instructions and when
a requested address corresponds to an instruction in the
buffer, fetch returns the uncompressed instruction from the
buffer. When a requested address is not in the buffer, the
target address is mapped to an address in the compressed
image and a compression block is fetched. A compression
block is the smallest region in the uncompressed binary
image that can be compressed as a single unit. To map tar-
get addresses in the uncompressed image to compression
blocks, fetch searches a lookup address table (LAT) with
the target address. The LAT maps a target address to a
compression block. A single entry in the lookup table maps
all addresses associated with a compression block to keep
the table small. After reading the compression block, it is
decompressed by doing a dictionary lookup on each sym-
bol in the block. The uncompressed instructions are con-
structed and stored into a buffer. The instruction at the
requested target address can be returned from this buffer. 

In buffer?

Lookup requested
address in LAT

Return instruction

Fetch compression
block

Decompress block
into buffer

For each symbol in
compression block:
1. look up uncompressed
symbol in dictionary
2. write uncompressed
symbol into buffer

Fetch with Decompression

Requested address

Replay access

Figure 2: Decompression Engine in Strata



Computer Science Department, University of Pittsburgh, Technical Report TR–03–102, September 2003

4

3.2 Compression/Decompression Strategy

Two strategies for code compression/decompression are
full and partial image compression/decompression. The
first approach keeps the entire binary compressed and
decompresses only those code segments that are accessed
at run-time. The second approach compresses the least fre-
quently used code and keeps the most frequently used code
uncompressed to get similar code size benefits as full
image compression with less performance overhead. 

In full image compression, the whole binary is com-
pressed as a sequence of compression blocks. It achieves
the best compression ratio since every fragment is com-
pressed. Partial image compression can have good com-
pression ratios, but also reduce the performance penalty
associated with decompressing fragments. Partial image
works well due to the 90-10 rule that says 90% of execu-
tion time is spent in 10% of the code. In partial image com-
pression, the goal is to keep that 10% of code
uncompressed. In this way, decompression costs are paid
only for a small portion of the code. The challenge is to
identify that 10% of code, particularly when data inputs
can influence what code is hot and what code is not. 

To identify hot code segments, we profile the applica-
tion to find fragment execution counts using a test data
input set. For profiling, we configure Strata to insert a
counter into every loaded fragment that is incremented
whenever a fragment is executed. With the fragment
counts, we can determine the hottest ones and exclude
them from compression based on a hotness threshold. Our
hotness threshold is a percentage that captures the most fre-
quently executed fragments. For example, a 10% threshold
will identify the 10% most frequently executed fragments
as hot fragments and the remaining 90% as cold fragments. 

To avoid fragmentation when forming compression
blocks, we partition hot and cold fragments into separate
groups in the binary image. We want to arrange fragments
that are temporally related to one another to be adjacent in
the binary in a way similar to code layout optimizations. In
this way, when compression is applied, cold blocks with a
temporal relationship will be compressed together in a
compression block. This partitioning reduces fragmenta-
tion in compression groups and exploits locality during
decompression. Our approach for partitioning relies on
identifying instruction code traces of related code frag-
ments. The instruction traces are similar to the traces that
are formed dynamically for instruction cache code re-lay-
out. However, the traces can be formed a priori to program
execution by the profiling step. Fragments along an execu-
tion path that are identified as hot are grouped as a single
trace and stored in an uncompressed form. Any fragments
that are not part of a hot trace are stored in compressed

form. Compressed traces are marked with a special symbol
to distinguish them from uncompressed traces. 

3.3 Fragment Cache Management

When decompressing an application binary, the run-
time memory footprint of the fragment cache must be con-
sidered. An SDT system should provide a mechanism for
managing the fragment cache so old code segments that are
no longer needed can be evicted. The memory space asso-
ciated with those old code segments can then be reclaimed. 

Similar to hardware caches, there are many manage-
ment schemes possible for the fragment cache [5]. How-
ever, there is an unique challenge with SDT memory
management: the cost of the policy must make it reason-
ably efficient to implement. For example, some policies
may be fairly expensive due to instrumentation code that
updates usage information. Sampling the usage informa-
tion at a sufficiently high interval may help to offset the
cost of instrumentation for more sophisticated policies.
There are simple schemes such as circular replacement that
do not need instrumentation, but they may make poor
cache management decisions. Hence, there is a trade-off
between the quality of management decisions and the cost
of gathering information. A similar difficulty is that the
cache unit size is variable because code fragments corre-
spond to basic blocks, which vary in size. Hence, when
inserting a new fragment, we may have to evict multiple
fragments to get enough memory space for the new frag-
ment. Likewise, we may evict a fragment that is larger than
the one being inserted, which results in fragmentation. 

For code decompression, the memory management
scheme is independent of the decompressor. In our system,
the code decompressor is in the fetch step and it passes
instructions to the decode and translate steps. A memory
manager is invoked by the translate step when writing
instructions into the fragment cache. 

4 Experiments

For compression/decompression to be successful, the
compression ratio must be high enough to warrant applying
compression and the overhead of the decompressor must
be low enough that it does not adversely impact perfor-
mance. In this section, we look at the overhead associated
with full and partial image decompression. 

4.1 Methodology

Using several MediaBench benchmarks and Strata, we
investigated the overhead of full and partial image decom-
pression on SPARC/Solaris 9 platform. To ensure good
compression ratios with CodePack, we changed the



Computer Science Department, University of Pittsburgh, Technical Report TR–03–102, September 2003

5

uncompressed symbol sizes to 13 and 19 bits to correspond
with immediate boundaries in the SPARC instruction set. 

To conduct experiments, we developed a simulator that
models decompression overhead and the fragment cache.
We used a simulator to make it easier to vary the size of the
fragment cache. The simulator accepts an input trace of
fragment addresses that is collected from Strata. 

The simulator models the fragment cache and the mem-
ory management policy to determine the instructions
fetched due to fragment cache misses. The simulator keeps
track of uncompressed and compressed fragments that are
fetched based on the execution trace to model the perfor-
mance overhead of decompression. The decompression
overhead from the simulator is added to the execution time
of a benchmark with Strata (no decompression) to compute
estimated run-time. While this approach has some error, it
is accurate enough to investigate the trade-offs associated
with code decompression in Strata. 

In the experiments, we used a 4 KB, 8 KB and 32 KB
fragment cache. The 32 KB cache fully captured the work-
ing set of all benchmarks to represent an unconstrained
cache. All fragment caches are fully associative and use
LRU. To get enough space, our memory manager will evict
fragments after the one being replaced as needed. We did
not model the overhead of cache management because we
are interested only in how decompression overhead varies
with full and partial image compression. 

4.2 Results

The first set of results that we consider is the compres-
sion ratio for full and partial image compression. Table 1
reports the compression ratio for full image compression
and the number of instructions excluded from compression
for partial image compression. The first column lists the
benchmark, the second column lists the number of instruc-
tions in the uncompressed binary, the third column lists the
compression ratio for full image compression (as a percent-
age), and the remaining columns list the number of instruc-
tions excluded from compression for partial image
compression with hotness thresholds of 1%, 5%, and 10%.
From the table, the compression ratio for full image com-
pression varies from 54.1 to 56.2%, which is on par with
CodePack for the PowerPC. 

For partial image compression, the compression ratios
do not appreciably differ from the full image ratios. In the
table, we list the number of instructions excluded from
compression for different hotness thresholds to illustrate
how few instructions are actually considered hot. The
fewer instructions that are excluded, the closer the ratio is
to full image compression. At a threshold of 1%, 2 to 402
instructions are excluded, which is very small relative to
overall image size. At a 10% threshold, the number of

instructions excluded is much higher than at a threshold of
1%. However, even in this case, the number of instructions
excluded is very small and varies from 69 to 2142. 

A second and perhaps more critical question is whether
the run-time performance overhead of decompression is
small enough to make it worthwhile. For full and partial
image decompression, we measured the run-time overhead
as shown in Table 2. The second column lists the percent-
age run-time increase with full image decompression rela-
tive to running the benchmarks in a native uncompressed
form with Strata. The fragment cache size is 32 KB
(unconstrained) for full image decompression in these
results. The results for partial image decompression (col-
umns 3 to 8) report the percentage improvement in over-
head relative to full image decompression for fragment
cache sizes of 4KB and 8KB. 

From the table, the overhead for full image decompres-
sion varies from 0.7% (GSMdec) to 5.2% (JPEGenc). The
decompression overhead is small because the fragment
cache size is unconstrained. In this case, a fragment is
decompressed only once when it is first loaded into the
cache. Most of a program’s execution time is spent execut-

Benchmark Num. 
Instrs.

Full Image 
Ratio

Excluded Instructions 
for Partial Image

1% 5% 10%
EPIC 73619 54.5 83 337 703
UNEPIC 69693 54.3 43 262 684
GSMenc 70628 55.2 402 801 1080
GSMdec 70624 55.2 46 224 503
JPEGenc 84793 54.0 71 682 1390
JPEGdec 85357 55.1 101 745 1186
ADPCMenc 62717 54.1 2 26 69
ADPCMdec 62711 54.1 3 29 77
MPEG2dec 75189 55.5 60 401 823
MPEG2enc 84307 56.2 162 888 2142
Table 1: Compression ratios and number instructions
excluded by partial image compression

Benchmark Full Image 
Overhead

% Improvement for Partial Image
1% 5% 10%

4K 8K 4K 8K 4K 8K
EPIC 3.3 1.2 1.2 5.1 5.2 11.7 11.5
UNEPIC 1.6 0.0 0.0 3.7 4.1 10.5 11.6
GSMenc 0.04 7.6 5.6 17.9 11.9 23.7 16.7
GSMdec 0.7 1.1 -- 5.6 -- 13.6 --
JPEGenc 5.2 1.6 1.3 11.4 10.9 19.0 18.5
JPEGdec 2.4 0.0 0.0 9.0 7.9 19.8 17.4
ADPCMenc 1.4 1.1 -- 19.6 -- 77.0 --
ADPCMdec 0.7 2.0 -- 20.5 -- 82.1 --
MPEG2dec 0.3 1.3 1.3 7.1 7.2 12.1 12.2
MPEG2enc 0.1 1.3 1.3 7.2 7.2 12.1 12.2
Table 2: Overhead (%) for full image decompression
and overhead improvement (%) due to partial image
decompression. 



Computer Science Department, University of Pittsburgh, Technical Report TR–03–102, September 2003

6

ing code in the fragment cache and the number of decom-
pressed fragments is small relative to execution time. 

Partial image decompression will not help much when
the fragment cache size is unlimited because the total num-
ber of fragments fetched is relatively small and avoiding
decompression on a small number of fragments will mini-
mally improve performance. However, for a constrained
fragment cache, keeping the hottest fragments as uncom-
pressed instructions may improve run-time performance. 

Table 2 shows the improvement (%) in run-time over-
head for partial image decompression versus full image
decompression. The results show the benefit of avoiding
decompression on some fragments. There is a benefit
because conflict misses can occur for small cache sizes. If
those conflict misses cause an eviction of a fragment from
a hot trace that may be needed again in the future, the miss
penalty associated with refetching that hot fragment is less.
For full image decompression, that same miss would cause
decompression of a fragment, whereas in partial image
decompression, the fragment would not be decompressed. 

The relative improvement of partial image decompres-
sion depends on the conflict misses and whether they
involve hot or cold fragments. As the table shows, the
improvement can be as high as 82.1% in an outlying case
and 0.0% in other cases. For a GSMdec, ADPCMenc, and
ADPCMdec, there was no difference between a 4 KB and
8 KB cache. The 4 KB cache captured most of the working
set, so the 8 KB cache had similar behavior (noted by “--”).
The benchmarks with the largest improvements, ADPCM-
dec and ADPCMenc, have small working sets and at high
hotness thresholds, a large portion of the working set is not
decompressed. Here, most cache misses involve cold start
misses when the application is first brought into the cache.
Hence, avoiding decompression on a large percentage of
the working set results in a large overhead improvement. 

Importantly, from the results in the tables, with a hot-
ness threshold of 10%, partial image decompression has a
significant performance improvement over full image
decompression for a small 4KB cache. Yet, the compres-
sion ratio is within 1% of full image compression. From
these results, we conclude that partial image compression
is effective and practical in a software dynamic translator. 

5 Related Work

There has been much work on code compression and we
describe techniques that are most similar to our approach.
Kirovski et al. proposed a compiler-directed technique that
manages a hardware cache to decompress program proce-
dures [8]. However, it may decompress portions of proce-
dures that are unneeded. Lefurgy et al. avoid
decompressing a procedure by decompressing instruction
cache lines [10]. In their approach, an interrupt occurs on

an instruction cache miss, which invokes an interrupt rou-
tine to decompress a line into the instruction cache. While
this approach tries to ensure that only instructions that are
likely to be executed are decompressed, the high interrupt
latency to invoke decompression on a per line basis may be
detrimental to system performance. Desoli et al. mention
code decompression in DELI, but they do not describe
their approach or an implementation [4]. Debray and Evans
proposed to decompresses a program based on code
regions [3]. The regions are identified by profiling to iden-
tify the working set to partition the program into uncom-
pressed and compressed code. Unlike our approach, their
technique is not targeted to SDT, such as a dynamic opti-
mizer or binary translator. Our approach also operates on
the same granularity as typical dynamic translators. Xie et
al. proposed a scheme that uses profiles to identify code
regions for compression [12]. We could use a version of
their decompressor in the same way that we use CodePack. 

6 Summary

Embedded software has become more adaptive and
software dynamic translation is one technique for enabling
that adaptivity. The combination of adaptivity and the need
to meet strict design requirements in embedded systems
makes it challenging to effectively managing system
resources. This paper described an approach for managing
program code storage resources with compression in a soft-
ware dynamic translator. We showed that full image com-
pression achieves high compression ratios, while partial
image compression can minimize decompression overhead
and achieve high compression ratios. This paper demon-
strated that it is feasible to apply code decompression in a
SDT system without unduly affecting performance. 

References

[1] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
transparent dynamic optimization system”, Programming
Language Design and Implementation, June 2000. 

[2] D. Bruening, T. Garnett, and S. Amarasinghe, “An infra-
structure for adaptive dynamic optimization”, Int’l. Symp.
on Code Generation and Optimization, March 2003. 

[3] S. Debray and W. Evans, “Profile-guided code compres-
sion”, Programming Language Design and Implementa-
tion, June 2002. 

[4] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J.
A. Fisher, “DELI: A new run-time control point”, Int’l.
Symp. on Microarchitecture (MICRO-35), Dec. 2002. 

[5] K. Hazelwood and M. Smith, “Code cache management
schemes for dynamic optimizers”, Workshop on Interac-
tion between Compilers and Computer Architecture, 2002.



Computer Science Department, University of Pittsburgh, Technical Report TR–03–102, September 2003

7

[6] T. Kemp, R. Montoye, J. Harper, J. Palmer, and D. Auer-
bach, “A decompression core for PowerPC”, IBM Journal
of Research and Development, Vol. 42, No. 6, Nov. 1998. 

[7] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure
execution via program shepherding”, 11th USENIX Secu-
rity Symposium, August 2002. 

[8] D. Kirovski, J. Kin, and W. H. Mangione-Smith, “Proce-
dure based program compression”, Int’l. Symp. on
Microarchitecture (MICRO-30), Dec. 1997.

[9] C. Lefurgy, E. Piccininni, and T. Mudge, “Evaluation of a
high performance code compression method”, Int’l. Symp.
on Microarchitecture (MICRO-32), 1999. 

[10] C. Lefurgy, E. Piccininni, and T. Mudge, “Reducing code
size with run-time decompression”, Int’l. Symp. on High-
Performance Computer Architecture, January 2000.

[11] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson,
and M. L. Soffa, “Retargetable and reconfigurable soft-
ware dynamic translation”, Int’l. Conf. on Code Genera-
tion and Optimization, March 2003. 

[12] Y. Xie, W. Wulf, and H. Lekatsas, “Profile-driven selective
code compression”, Design, Automation, and Test in
Europe (DATE’03), 2003.


