
Abstract
Over the past several decades, the compiler research

community has developed a number of sophisticated
and powerful algorithms for a variety of code improve-
ments. While there are still promising directions for
particular optimizations, research on new or improved
optimizations is reaching the point of diminishing
returns and new approaches are needed to achieve sig-
nificant performance improvements beyond traditional
optimizations. In this paper, we describe a new strategy
based on a continuous compilation system that con-
stantly improves application code by applying aggres-
sive and adaptive code optimizations at all times, from
static optimization to online dynamic optimization. In
this paper, we describe our general approach and pro-
cess for continuous compilation of application code. We
also present initial results from our research with con-
tinuous compilation. These initial results include a new
prediction framework that can estimate the benefit of
applying code transformations without actually doing
the transformation. We also describe results that dem-
onstrate the benefit of adaptively changing application
code for embedded systems to make trade-offs between
code size, performance, and power consumption.

1. Introduction
Much of the past and recent research in program

optimization has focused on developing new algorithms
to perform a particular optimization or transformation.
Indeed, over the previous decade the compiler research
community has developed sophisticated, powerful opti-
mization algorithms for a variety of code improve-
ments: register allocation and assignment, common
subexpression elimination, partial redundancy elimina-
tion, loop optimizations (e.g., loop fusion, loop unroll-
ing, loop interchange, etc.), code scheduling, and
function inlining to name a few. While there are still
avenues of promising research for particular optimiza-
tions, we are at the point where the performance gains

of a new or improved optimization algorithm is usually
small—an improvement of a few percent is typical.

Today’s challenge for optimization research is to
develop new techniques and approaches that yield per-
formance improvements that go beyond today’s small
single digit improvements. In our work, we are address-
ing this challenge by investigating and developing an
innovative framework and system for continuously and
adaptively applying optimizations. Our system, the
Continuous Compiler (CoCo), applies optimizations
both statically at compile-time and dynamically at run-
time using optimization plans developed at compile
time and adapted at run time.

Rather than focusing on developing new optimiza-
tion algorithms (e.g., a new register allocation algo-
rithm, a new loop interchange algorithm) or improving
existing optimizations (e.g., better coloring heuristics,
better placement algorithms), our work focuses on
understanding the interaction of existing optimizations
and the efficacy of static and dynamic optimizations.
Using this knowledge along with information about the
application gathered by static analysis, profile informa-
tion and monitoring, CoCo will determine how to apply
a suite of optimizations so that the optimizations work
in concert to yield the best improvements. The result of
CoCo’s analyses are compile-time and run-time plans
that specify what optimizations to apply to the applica-
tion, the order to apply them, and the conditions under
which the optimizations should be applied to achieve
maximum benefit. Applying compile-time plans
assures that very high-quality code for the application is
generated initially, while applying plans dynamically
ensures that the executing application can adapt to
changing user behavior and program behavior.

In this paper, we describe our preliminary work with
CoCo. We first present our general approach and strat-
egy to continuous compilation. We also describe a pre-
diction framework that is included in CoCo to estimate
the benefits of applying code optimizations. With this
prediction framework, the code optimizer can make

Continuous Compilation: A New Approach to Aggressive and Adaptive Code
Transformation

Bruce Childers+, Jack Davidson*, Mary Lou Soffa+

+Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
{childers, soffa}@cs.pitt.edu

*Department of Computer Science
University of Virginia

Charlottesville, VA 22904
jwd@cs.virginia.edu

decisions about when to apply optimizations and poten-
tially in what order to apply them. We also describe
work that makes trade-offs between different con-
straints in embedded systems. This work shows how
small code footprints can be achieved while getting
good performance on the ARM processor.

2. Continuous Compilation
The primary objective of our research is the devel-

opment of a system that continuously monitors and
optimizes an application program to improve its perfor-
mance. This system will monitor and observe applica-
tion behavior and adapt its optimization strategies to
match the current characteristics being exhibited by the
application. It will also capture the continuos nature of
applications by not only applying optimizations stati-
cally and dynamically, but also by applying optimiza-
tions across multiple runs.

Our continuous and adaptive compiler will go
through several phases as it improves an application.
Figure 1 shows the compilation phases. In the first
phase, static optimization plans are generated using the
program, extended profiles from previous training runs
(see section 2.3.1) and estimation models of the benefit
and cost of applying particular optimizations given the
target machine architecture. Using the static optimiza-
tion plans, an initial optimized binary is generated for
the application. In CoCo, the application of optimiza-
tions is separate from the planning of optimizations. In
this first phase, dynamic optimization plans and moni-
tor plans are also generated for use by a dynamic opti-
mizer.

In the second phase, a dynamic optimizer applies
code transformations at run-time in response to changes
in program behavior as guided by the dynamic optimi-
zation plans. In our system, the planning of dynamic
optimizations can be done statically to reduce the over-
head of applying dynamic optimizations and to improve

their effectiveness by using more powerful planning
techniques (e.g., AI planning, integer linear program-
ming) than what could be used at run-time. The applica-
tion of code transformations is controlled by the
dynamic optimizer based on the optimization and moni-
tor plans. The optimization plans indicate how to trans-
form the binary program and the monitor plans indicate
what application and machine events to watch to deter-
mine when and where to apply a particular optimization
plan.

A third phase refines and adapts the monitor and
optimization plans generated by the initial compilation
phase. The plans are improved using information about
the actual execution of the application binary. Thus, in
the third phase, more up-to-date information about the
actual execution of the binary can be used to improve
the initial plans. Information about past runs of the
application is kept and constantly updated, building up
a repository of details about the binary program’s
dynamic behavior that can be used to guide optimiza-
tion planning. The third phase will be invoked in two
ways. First, the phase can be invoked after each succes-
sive run of the application. Second, a separate plan
refinement server can be invoked concurrently with the
application’s execution to refine optimization and mon-
itor plans. For long-running applications that may take
days to execute, such a separate server is critical to
ensuring that the overhead of collecting detailed contin-
uous state can be amortized immediately while the
application is executing (rather than waiting until suc-
cessive runs to amortized the overhead cost). The plan
refinement server will inject its refined plans into the
dynamic compiler’s current plan portfolio whenever a
newly refined plan is generated. By continuously adapt-
ing and updating the optimization and monitor plans,
we expect that over time the plans will become simpler
and more specific and apply “the right optimizations at
the right time.”

Figure 1: Phases of Continuous Compilation

Static Compilation
(using profiles,

estimation models)

Phase 1

Static Compilation
(using profiles,

estimation models)

Phase 1

Program Execution
and Dynamic

Optimization (using
monitor and

optimization plans)

Phase 2

Program Execution
and Dynamic

Optimization (using
monitor and

optimization plans)

Phase 2

Off-line Adaptation
and Refinement of

Monitor and
Optimization Plans

Phase 3

Off-line Adaptation
and Refinement of

Monitor and
Optimization Plans

Phase 3

Recompilation and
Regeneration of

Monitor and
Optimization Plans

Phase 4

Recompilation and
Regeneration of

Monitor and
Optimization Plans

Phase 4

As time passes, the continuous compiler moves through phases, possibly revisiting earlier ones.

Although continuously updating optimization plans
may lead to steady-state behavior, there are likely to be
cases where convergence is never achieved. Programs
whose behavior varies with different data input sets are
cases where convergence is unlikely (and, perhaps,
undesirable as the system should continuously optimize
the application based on the current data set). Further-
more, it is advantageous to statically reapply optimiza-
tions to the binary as better and more complete
information is collected about a program’s behavior. To
address the problem of convergence and to capture bet-
ter information in the statically optimized program, a
fourth phase will fully recompile and optimize the
application. This phase uses all information about the
application—estimation models, profiles, and details
about actual program runs—to optimize the program
and generate monitor and dynamic optimization plans.
This fourth phase will recompile the application offline
and apply the full weight of its optimization and plan-
ning techniques.

3. Predicting the Impact of Optimizations
Although code improvement optimizations have

been applied by optimizing compilers for almost 40
years, many performance problems remain. In particu-
lar, when applying optimizations, a number of decisions
are made using fixed strategies, such as always apply-
ing an optimization if it is applicable, applying optimi-
zations in a fixed order, and assuming a fixed
configuration for optimizations. While it is widely rec-
ognized that these fixed strategies or plans may not be
the most appropriate for producing high-quality code,
there are no practical and automatic strategies that do
otherwise. It is well known that optimizations may
degrade performance in certain circumstances, but there
is no analytic way to determine when this might happen
and choose not to apply an optimization to get better
performance. Also, there is no effective way to deter-
mine the best order of applying optimizations, although

the order can have an impact on performance as optimi-
zations can interact with one another by creating or
destroying the potential for further optimizations. These
problems have become particularly important in recent
years with the tremendous growth in cost-sensitive
embedded systems, where achieving the very best per-
formance is paramount. What is needed is an effective
way to uniformly express the variations among optimi-
zations, their impact on different objectives, and their
interactions to make predictions about when it is bene-
ficial to apply an optimization.

3.1. Prediction Framework

Our approach in CoCo is to develop a framework
that lets us predict the impact of applying an optimiza-
tion without actually applying it. In this way, decisions
can be made about what optimizations to apply and in
what order to apply them in a particular code context.
CoCo’s prediction framework consist of three types of
models: optimization models, code application models,
and resource models. The structure of our prediction
framework, as shown in Figure 2, includes (1) optimi-
zation models that represent the characteristics of the
optimizations in terms of how they will impact an
objective, both qualitatively and quantitatively, (2)
resource models that parameterize the target machine
configuration, and (3) application code models that
abstract information about the application. By integrat-
ing the models, a “benefit” value is produced that repre-
sents the benefit of applying an optimization in a code
context with the objective represented by the resource.

Using the prediction framework, decisions can be
made about whether it is beneficial to apply an optimi-
zation given a particular code context. The optimization
models (with different configurations or different opti-
mizations) can be combined and we can predict the
benefit of combining optimizations rather than applying
them one at a time. When more than one optimization

Figure 2: Prediction Framework for CoCo

Source Code Application
Models

Optimization Models

OP1 OPN...
Prediction

Resource Models

RM1 RMN...

can be applied in a code segment, the framework can be
used to predict the best one to apply. Lastly, the predic-
tion value can be used as an objective function when
using search techniques such as genetic algorithms and
AI planning for developing optimization plans.

3.2. Prediction for Loop Optimizations

As the disparity between processor and main mem-
ory speed increases by approximately 50 percent per
year, the use of caches with high hit rates has become
critical for performance. Data caches are designed to
exploit locality, and naturally they work best for pro-
grams that have high locality. Some optimizations are
designed to improve cache performance by rearranging
the code to have better locality. However, other optimi-
zations are not designed specifically for this purpose
and may negatively impact cache performance and the
overall performance.

We have used CoCo’s prediction framework to esti-
mate the impact of applying optimizations on data
cache performance. Since loop behavior tends to domi-
nate cache performance, we are initially focusing on
loop optimizations. Our prediction framework is tai-
lored to represent the characteristics of loops and opti-
mizations that impact cache performance. We also use a
model of cache behavior for the array referencing pat-
terns that estimates the cache cost of executing a code
segment. After determining the impact of an optimiza-
tion on cache performance with the models, the code
optimizer can decide whether it is beneficial to apply
the optimization. Below we briefly describe each of our
models. More detail about the models are in Zhao,
Childers, and Soffa [20].

3.2.1. Code Model

To predict the impact of optimizations on cache per-
formance, we need to express code characteristics that
affect the cache. For the optimizations that we are ini-
tially considering, the code model represents the loop’s
header and the sequence of array references in a loop
body. The model captures several aspects of a loop nest:
(1) the loop header with its lower and upper bounds and
iteration step; (2) all array references and their type
(includes read and writes and their affine expression);
and (3) an array reference sequence that consists of all
array references in a loop body in the order that they
appear in the intermediate code. The model can also
capture a loop nest sequence that represents the order of
loops that they appear in the input code. Importantly,
the code model is a simple notation that formally
describes and abstracts the details of a loop nest that are

needed by loop optimization. The code model also has
all necessary information needed to estimate the cache
performance of a loop.

3.2.2. Optimization Models

To represent the impact of loop optimizations on
cache performance, we model the transformation of an
unoptimized loop nest to an optimized loop nest. We
have optimization models for loop interchange, loop
unrolling, loop tiling, loop reversal, loop fusion, and
loop distribution. In all of these models, the transforma-
tion is represented by a sequence of functions that effect
the various aspects of a loop’s representation. For
example, in loop reversal, the direction in which a loop
traverses its iteration range is reversed. Our optimiza-
tion models have an impact function that describes how
the loop is changed. In the case of loop reversal, for a
given loop code model, a new loop code model is gen-
erated in which the loop header has been changed to
indicate the new traversal order. These models are
unique in that they do not apply the code transformation
to the actual code. Instead, they predict how the code is
changed, and the predicted changes are embodied in the
new code model produced by the optimization models.

3.2.3. Cache Model

With the code and optimization models, we can
accurately reflect and predict how the application code
is transformed by a loop optimization. To determine
whether or not the loop optimization had a benefit in
terms of its cache performance, we use a separate cache
model. The cache model takes the loop code model and
models the effect that the array references within the
loop have on the cache. The model indicates how a
given reference pattern effects both the misses and hits.
Thus, to measure whether or not an optimization
improves cache performance, we can use the cache
model to determine whether the number of cache
misses was increased or decreased. This estimation is
done by comparing the cache performance with the
code model before the loop optimization model is
applied and with the code model after the loop optimi-
zation model is applied.

3.2.4. Preliminary Results

To investigate the accuracy of our framework toward
predicting the impact of loop optimizations on cache
misses, we implemented our models and tested them
with several benchmark loops. The benchmarks came
from the PERFECT suite and other researchers [11].

For this initial study, we looked at benchmarks with a
single loop nest. The benchmarks include alv, irkernel,
lgsi, smsi, srsi, tfsi, and tomcat3.

Using these benchmarks, we validated our optimiza-
tion and cache models. A tool was developed that takes
a loop nest and based on our models computes the num-
ber of cache misses for both the original and optimized
loop nests. The difference in the cache misses is used to
predict the impact of a loop optimization on cache per-
formance. To validate the predictions, we ran the origi-
nal and optimized loop nests with the SimpleScalar
sim-cache simulator [3] to measure the impact on cache
performance. The simulator was configured with a 1
kilobyte direct-mapped data cache with 32-byte blocks.
We can scale the input data set sizes relative to this
small cache to simulate different ratios of working set
size to cache size. With this cache configuration, we
compare our predictions against the simulation results.
If an optimization improves performance with the sim-
ulation results, and our model predicted that the optimi-
zation should be applied, then we consider that to be a
correct prediction. If the simulation results do not
match our predicted results, then we consider that to be
a misprediction. We computed a prediction accuracy for
our models that captures how often our model gives the
correct predictions.

Table 1 shows the prediction accuracy of our models
for each benchmark and loop optimization considered.
The prediction accuracies in the table are averages
across a range of trip counts for each benchmark. The
trip count was varied from 50 to 200 for each bench-
mark to simulate different ratios of working set size to
cache size and to determine whether our model can
accurately reflect different loop configurations. The
prediction accuracy of our framework in determining
when to apply optimizations is 97.2% on average. The
prediction accuracy for loop reversal on lgsi is 82%.
This lower prediction accuracy is because for most trip
counts, the cache miss reduction of loop reversal is so
small (the reduction is just one or two misses) that our
model can not predict the benefit. Instead, our model
does not apply loop reversal in these cases when the
miss reduction is so small. Not applying reversal in this

case does no harm since the relative improvement of
applying reversal is minimal and can be ignored.

4. Trade-off of Code Size versus Perfor-
mance

Many embedded and mobile applications have strin-
gent requirements in terms of performance, code size,
and power consumption. As a prime example, consider
the software for cellular telephones. Here quality of ser-
vice considerations requires maximizing performance,
cost considerations requires minimizing code size, and
battery life requires minimizing power consumption.
We are exploring the use of adaptive compilation as a
means of meeting the cross-cutting demands of perfor-
mance, code size, and power consumption in systems
where changing execution profiles make traditional
static techniques ineffectual.

Our preliminary work has focused on the exploita-
tion of the ARM7TMDI architecture The ARM7TDMI
architecture was designed for cost-sensitive applica-
tions that require a balance between performance, code
size, and power consumption.1 To allow trade offs
between performance, code size, and power, the
ARM7TDMI architecture provides two instruction
sets—ARM and Thumb—within a single CPU. The
ARM instruction set is a 32-bit RISC-like instruction
set. It is used when high-performance and low power
consumption is required. The Thumb instruction set is a
subset of the ARM instruction set and each instruction
is encoded in 16-bits. Thus a 32-bit word can hold two
Thumb instructions. Published reports indicate that
Thumb programs are typical 30% smaller than equiva-
lent ARM programs. This reduction in code space

Benchmark Interchange Tiling Reversal Unrolling Fusion Distribution
alv 100% 100% 97.4% 100% N/A 100%

irkernel 98.7% 100% 93.4% 100% N/A N/A
lgsi 100% 100% 82% 100% N/A N/A
smsi 100% 100% 86.8% 100% N/A N/A
srsi 100% 100% 86.8% 100% N/A N/A
tfsi 100% 97.4% 100% 100% N/A N/A

tomcat3 98.7% 92.1% 93.4% 100% 100% N/A

Table 1: Model Prediction Accuracy

1. Our measurements of currently available implementa-
tions of the ARM/Thumb architecture, indicate that
improving performance also reduces power consump-
tion. For other architectures or other implementations
of the ARM this relationship between performance
and power consumption might not hold. Conse-
quently, we will continue to treat performance, code
size, and power consumption as distinct constraints.

comes at a price—Thumb programs execute more
instructions and consequently use more power. As a
result, the Thumb instruction set is used when compact
code is required and performance and power are lesser
considerations.

Current compilation tools for the ARM7TMDI plat-
form provide a mechanism for mixed use of ARM and
Thumb instruction sets at the module level. The instruc-
tion set to be used for a whole source file is specified
when the file is compiled, and different modules com-
piled into different instruction sets can be linked
together to build a binary. While this approach gives the
software developer some control over balancing perfor-
mance, code size, and power consumption, it is a
coarse-grained approach. In this research, we are devel-
oping a more fine-grained approach that is applied
dynamically to exploit the trade-off relationship
between the two instruction sets. With a fine-grained
approach, within a module performance critical sec-
tions will be compiled into ARM code, while portions
of the code that are seldom executed (e.g., error check-
ing and recovery code) will be compiled to Thumb
code. While our overall goal is a dynamic approach, we
are first focusing on developing static techniques that
use offline execution profiles. Using the experience
gained, we will extend the approach so that applications
with dynamically changing execution profiles and
resource requirements can be handled.

4.1. Fine-grained code generation for perfor-
mance/space/power trade offs

To achieve more flexibility in making trade offs
between performance, code density, and power con-
sumption, we need to be able to switch between the
ARM and Thumb instruction sets at a finer-grained
level. Conceptually, we need a mechanism that auto-
matically uses ARM code for frequently executed sec-
tions of code, and that uses Thumb code for
infrequently executed code sections. If applied prop-
erly, this should lead to code that achieves performance
that is nearly the same as a program that has been com-
piled entirely into ARM code, yet is nearly as compact
as a program that has been compiled entirely into
Thumb code. Indeed, this is the goal of this research—
produce code that is a compact as a Thumb program yet
achieves performance equivalent to an ARM program.

One of the first tasks of this research is to determine
how fine-grained of an approach is feasible. One level
of granularity is to use ARM code for loops with deep
nest levels and high iteration counts, and Thumb code
for all other parts of the program. We expect this
approach to be too coarse to achieve our goal. For

example, consider a loop that has two alternative paths
in its body as shown in flow graph of Figure 3. Suppose
blocks C and D are frequently executed while blocks E
and F are not. Such a situation might arise if blocks E
and F are error handling code. In most circumstances
blocks E and F are never executed. In this case, the best
code would be produced by compiling blocks A, B, C, D,
and G into ARM code and blocks E and F into Thumb
code.

A more fine-grained approach would be at the basic-
block level. Assuming profile data was available to
indicate which blocks were heavily used, this approach
would address the example given in Figure 3. However,
we cannot base our decision as to which instruction set
to use solely on the execution frequency of the blocks.
For example, consider two blocks, A and B, which are
executed 1000 and 500 times, respectively. If we decide
which blocks are to be compiled to ARM or Thumb
code based on execution counts only, block A would
have a higher probability than block B of being com-
piled to ARM code. However, if it happens that block A
is a very small block (say 3 instructions), and block B is
a large block (say fifty instructions), then it would be
best to favor B over A as a candidate for being compiled
to ARM code (both in terms of code size and execution
time).

The previous example indicates that we must have
an accurate cost-benefit model to base our code genera-
tion decisions. Another factor that must be considered
is the overhead introduced by the mode switch instruc-
tions necessary to transition between machine models.1
It is crucial to the success of the fine-grained approach
that we minimize the overhead of mode switches. Such
effects must be considered in the cost-benefit model
employed.

Figure 2 contains a diagram that illustrates the sys-
tem we are building. Since there is no one-to-one corre-
spondence in control flow structures between the same
program compiled into ARM code and Thumb code
(the ARM has predicated execution, while the Thumb
does not), we first compile the entire program into
Thumb instructions. We enumerate a number of candi-
date paths for translation to ARM code, calculate the
cost (in terms of code size) of translating the blocks on
this path as well as the benefit (in terms of execution
time) from translating those blocks, and select one path
at a time that is expected to give the most savings in
execution time for a small increase in code size.

For now we assume that the candidate paths are acy-
clic subpaths that begin at the entry node of a loop and

1. To switch instruction sets requires executing a special
mode switch instruction.

end at the exit node of that loop. Let V(p) denote the set
of nodes (basic blocks) on a candidate path p, and let
f(v) denote the execution frequency of node v. When we
choose one path from the set of candidate paths, we can
identify the set of edges along which the processors
execution mode must be switched. that is, the edges on
which mode switch instructions must be inserted are the
ones that connect a node belonging to the selected path
and another node that is not (yet) selected for transla-
tion. Note that when either the source or the destination
of two (or more) edges is the same, we need only gener-
ate one set of mode switch instructions for those two (or
more) edges. Let E*(p) denote the set of edges along
which mode switch instructions should be inserted, and
let f(e) denote the execution frequency of edge e. Then
the benefit of selecting a path p can be calculated by

where and denote the estimated execu-
tion time of block v compiled into Thumb instructions
and ARM instructions, respectively. The cycle time
overhead of one mode switch instruction is denoted by

. Intuitively, the benefit function gives the
expected savings in the execution time by translating
the blocks on path p into ARM instructions. On the
other hand, the cost of selecting a path p can be calcu-
lated by

where and denote the code size of block
v compiled into ARM and Thumb instructions, respec-

tively, while denotes the code size overhead for one
set of mode switch instructions.

4.2. Preliminary results

A preliminary implementation has been developed
to test both the feasibility and the effectiveness of this
approach for addressing performance/size/power trade
offs. The implementation is preliminary as some of the
phases are not fully implemented. For example, we
manually generate the necessary profiles information
manually using a number of tools. Furthermore, the
code quality of the ARM code for the mixed binaries
could be improved. For example, the translation from
Thumb to ARM code currently does not take advantage
of the additional registers available when running in
ARM mode.

Figure 4 compares the time/space trade offs of the
approach for three benchmarks from the MediaBench.
All numbers have been normalized to the ARM mea-
surements. Recall our goal is to have the mixed binary
have nearly the same code size as the Thumb binary, yet
have the mixed binaries achieve nearly the same execu-
tion performance as the ARM binary.

For the crc benchmark, our goal is achieved—the
mixed binary size is nearly the same as the Thumb
binary, and the code actual runs faster than the ARM
binary. The improved performance is because of better
cache behavior with the compressed binary. For the sha
benchmark, again the mixed binary is nearly the same
as the Thumb binary, however the execution time is 50
percent greater than the ARM binary. We believe that
with an improved register allocator, the execution time
can be reduced to near that of the ARM. The results for
the dijkstra benchmark are similar to the results for sha.

Figure 3: Flow graph of candidate loop for mixed-mode code generation.

A

B

C E

D F

G

b p() f v)() tT v() tA v()–()×() ot– f e()

e E∗ p()∈
∑×

v V p()∈
∑=

tT v() tA v()

ot b p()

c p() sA v() sT v()–() ss+ E∗ p()×
v V p()∈
∑=

sA v() ST v()

os

4.3. Dynamic fine-grained code generation for
performance/space/power trade offs

The preliminary steps outlined in the previous sec-
tion used offline profiles to determine which program
paths should be compile to ARM code and which
should be compiled to Thumb code. While a necessary
first step, there are many types of applications where
offline profiles are inadequate. These applications are
embedded in systems where there are changing
demands and resources (e.g., handheld devices, mobile
sensors, real-time data acquisition, etc.). In this type of
dynamic application, over the lifetime of a program’s
execution, certain program paths may be “hot” while at
other times they may be “cold.”

To handle applications with dynamically changing
resource requirements requires that we adapt our com-
pilation strategy so that it can be applied dynamically as
the program is executing. Our approach is to use analy-
sis of offline profiles to build code generation plans that
are executed at runtime as the program moves through
different phases. (Such transitions are sometimes called
phase shifts). There are many research challenges that
must be addressed to realize this type of dynamic fine-
grained code generation. Some of the major challenges
are:

• to develop estimation models that take into
account the cost of dynamic code generation,

• to develop tools that develop code generation
plans that can be applied dynamically,

• to develop low-overhead profiling techniques
that are suitable for supplying information to a
dynamic code generator, and

• to develop a fast, retargetable code generator for
use in dynamic code generation.

We believe the techniques and algorithms that are
developed for this research will contribute significantly
to the development and deployment of embedded and
mobile applications that have stringent requirements in
terms of performance, code size, and power consump-
tion.

5. Related Work
Dynamic compilation schemes choose portions of

the code to compile/recompile and then compile the
code with a set of optimizations. Early strategies relied
on static strategies [4,5,9,13,19]. Later efforts chose the
compilation targets dynamically, attempting to focus on
hot spots [6,14]. Recent work in this area has included
adaptive online feedback-directed optimization [1].
Another form of dynamic compilation is selective com-
pilation [10,15,17] which is a staged form of compila-

Figure 4: Size and speed comparison of pure ARM binaries, mixed binaries, and pure Thumb binaries

0

0.5

1

1.5

2

2.5

Size Speed Size Speed Size Speed

crc sha dijkstra

ARM

Mixed

Thumb

tion. Dynamic optimization systems separates the task
of compilation from optimization with the optimiza-
tions occurring entirely at run time and not requiring
any user assistance. Dynamo is a dynamic optimization
system that both interprets and directly executed native
code [2]. Another proposed dynamic optimization sys-
tem is the continuous program optimization architec-
ture designed for Oberon that embodies up-to-the-
minute profiling information and enables continuous
optimization [12]. Other work includes Plezbert and
Cytron’s continuous compiler that overlaps the compi-
lation phase with program interpretation and native
execution in a Java virtual machine [12]. This work is
similar in the respect that a separate compilation phase
is done concurrently with program execution. However,
our work is more aggressive and adaptive in that our
compilation phases include the full spectrum of static
compilation, dynamic application of optimizations and
re-optimization with profile information and optimiza-
tion plans. The interactions of code optimizations play
an important role in the develop of CoCo. Early
research on code interactions developed a language for
specifying optimizations and identified the interactions
among a set of traditional optimizations using formal
techniques as well as experimental techniques [18].
Recently, research efforts have been exploring the use
of search techniques to identify the interactions as well
as the value of determining the best order to apply opti-
mizations at different portions of the code [7,8].

6. Summary
In this paper, we described a new approach to

aggressive and adaptive code transformation based on a
continuos compilation system. We presented prelimi-
nary work towards developing a continuous compila-
tion system, including a framework for predicting the
impact of optimizations on machine resources and per-
formance. In the paper, we showed that the prediction
framework has high accuracy for loop optimizations
and their interaction with a processor’s data cache. We
also described work that showed the benefit of making
trade-offs in constraints for embedded systems. The
work demonstrated that good performance can be
achieved in embedded codes while keeping code foot-
print small by using a combination of compact (Thumb)
and normal instructions for the ARM processor.

7. Acknowledgements
The work on predicting the impact of optimizations

is the Ph.D. research of Min Zhao who is a student at
the University of Pittsburgh. The research on fine-
grained code generation for performance/space/power
trade offs is the PhD research of Sheayun Lee of the

Seoul National University who was a visiting scholar as
the University of Virginia in 2002. This work was sup-
ported in part by National Science Foundation grants
ACI–0203945 and ACI–0203956.

8. References
[1] M. Arnold, S. Fink, V. Sarkar and P. Sweeney, “A com-

parative study of static and profile-based heuristics for
inlining”, ACM Workshop on Dynamic and Adaptive
Optimization, pp. 52–64, 2000.

[2] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
transparent dynamic optimization system”, ACM Conf.
on Programming Language Design and Implementa-
tion, pp. 1–12, 2000.

[3] D. Burger and T. Austin, “The SimpleScalar tool set,
version 2.0”, University of Wisconsin Computer Sci-
ence Technical Report 1342, June 1997.

[4] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V.
Sarkar et al., “The Jalapeno Dynamic Optimizing
Compiler for Java”, Proc. of Java ‘99, pp. 129–141,
1999.

[5] C. Chambers and D. Ungar, “Making pure object-ori-
ented languages practical”, 6th Conf. on Object-Ori-
ented Programming Systems, Languages, and
Applications, pp. 1–15, 1991.

[6] M. Cierniak, G-Y Lueh, and J.M. Stichnoth, “Practic-
ing JUDO: Java under dynamic optimizations”, ACM
Conf. on Programming Language Design and Imple-
mentation, 2000.

[7] K. Cooper, D. Subramanian, and L. Torczon, “Adap-
tive optimizing compilers for the 21st century”, Los
Alamos Computer Science Institute’s 2001 Symposium,
2001.

[8] K. Cooper, P. Schielke, and D. Subramanian, “Opti-
mizing for reduced code space using genetic algo-
rithms”, Workshop on Lang., Compilers, and Tools for
Embedded Systems, 1999.

[9] P. Deutsch and A. M. Schiffman, “Efficient implemen-
tation of the smalltalk-80 system”, 11th ACM Symp. on
Principles of Programming Languages, pp. 297–302,
1984.

[10] B. Grant, M. Philpose, M. Mock, C. Chambers, and S.
Eggers, “An evaluation of staged run-time optimiza-
tions in DyC”, ACM Conf. on Programming Language
Design and Implementation, 1999.

[11] J.S. Hu, M. Kandemir, J. Ramanujam, and A.
Choudhary, “Improving cache locality by a combina-
tion of loop and data transformations”, IEEE Trans. on
Computers, Vol. 48, No. 2, February 1999.

[12] T. Kistler and M. Franz, “Continuous program optimi-
zation: Design and evaluation”, IEEE Trans. on Com-
puters, pp. 549–566, June 2001.

[13] A. Krall, “Efficient Java VM just-in-time compila-
tion”, Int’l. Conf. on Parallel Architectures and Com-
pilation Techniques, pp.202–212, 1998.

[14] S. Meloan, “The Java HotSpot performance engine:
An in-depth look”, Sun Java Developer Connection,
1999.

[15] R. Marlet, C. Consel, and P. Boinot, “Efficient incre-
mental run-time specialization for free”, ACM Conf. on
Porgramming Language Design and Implementation,
pp. 281–292, 1999.

[16] M. Plezbert and K. Cytron, “Does ‘just in time’ = ‘bet-
ter late than never’?”, ACM Symp. on Principles of
Programming Languages, 1997.

[17] M. Poletto, W. Hsieh, D. Engler, and M. Kasshoek, “‘C
and tcc: a language and compiler for dynamic code
generation”, ACM Trans. on Programming Languages
and Systems, 1999.

[18] D. Whitfield and M. L. Soffa, “An approach to order-
ing optimizing transformations”, ACM Symp. on Prin-
ciples and Practice of Parallel Programming, pp. 137–
147, 1990.

[19] B-S Yang, S-M Moon, S. Park et al, “LaTTe: A Java
VM just-in-time compiler with fast and efficient regis-
ter allocation”, Int’l. Conf. on Parallel Architectures
and Compilation Techniques, 1999.

[20] M. Zhao, B. Childers, and M. L. Soffa, “FPO: A
framework for predicting the impact of optimizations”,
technical report number TR–02–102, Department of
Computer Science, University of Pittsburgh, Novem-
ber 2002.

