
Abstract
Software dynamic translation (SDT) is a technology

that allows programs to be modified as they are run-
ning. The overhead of monitoring and modifying a run-
ning program’s instructions is often substantial in SDT
systems. As a result, SDT can be impractically slow,
especially in SDT systems that do not or can not employ
dynamic optimization to offset overhead. This is unfor-
tunate since SDT has obvious advantages in modern
computing environments and interesting applications of
SDT continue to emerge. In this paper, we investigate
several overhead reduction techniques, including indi-
rect branch translation caching, fast returns, and static
trace formation, that can improve SDT performances
significantly.

1. Introduction

Software dynamic translation (SDT) is a technology
that allows programs to be modified as they are run-
ning. SDT systems virtualize aspects of the host execu-
tion environment by interposing a layer of software
between program and CPU. This software layer medi-
ates program execution by dynamically examining and
translating a program’s instructions before they are run
on the host CPU. Recent trends in research and com-
mercial product deployment strongly indicate that SDT
is a viable technique for delivering adaptable, high-per-
formance software into today’s rapidly changing, heter-
ogeneous, networked computing environment.

SDT is used to achieve distinct goals in a variety of
research and commercial systems. One of these goals is
binary translation. Cross-platform SDT allows binaries
to execute on non-native platforms. This allows exist-
ing applications to run on different hardware than origi-
nally intended. Binary translation makes introduction of
new architectures practical and economically viable.
Some popular SDT systems that fall into this category
are FX!32 (which translates IA-32 to Alpha) [4],

DAISY (which translates VLIW to PowerPC) [10],
UQDBT (which translates IA-32 to SPARC) [20], and
Transmeta’s Code Morphing technology (which trans-
lates IA-32 to VLIW) [8].

Another goal of certain SDT systems is improved
performance. Dynamic optimization of a running pro-
gram offers several advantages over compile-time opti-
mization. Dynamic optimizers use light-weight
execution profile feedback to optimize frequent exe-
cuted (hot) paths in the running program. Because they
collect profile information while the program is run-
ning, dynamic optimizers avoid training-effect prob-
lems suffered by static optimizers that use profiles
collected by (potentially non-representative) training
runs. Furthermore, dynamic optimizers can continually
monitor execution and reoptimize if the program makes
a phase transition that creates new hot paths. Finally,
dynamic optimizers can perform profitable optimiza-
tions such as partial inlining of functions and condi-
tional branch elimination that would be too expensive
to perform statically. SDT systems that perform
dynamic optimization include Dynamo (which opti-
mizes PA-RISC binaries) [1,9], Vulcan (which opti-
mizes IA-32 binaries) [18], Mojo (which optimizes IA-
32 binaries) [3], DBT (which optimizes PA-RISC bina-
ries) [11], and Voss and Eigenmann’s remote dynamic
program optimization system (which optimizes SPARC
binaries using a separate thread for the optimizer) [21].
Some of the binary translators previously described
also perform some dynamic optimization (e.g., DAISY,
FX!32, and Transmeta’s Code Morphing technology).

SDT is also a useful technique for providing virtual-
ized execution environments. Such environments pro-
vide a framework for architecture and operating
systems experimentation as well as migration of appli-
cations to different operating environments. The advan-
tage of using SDT in this application area is that the
simulation of the virtual machine is fast—sequences of
virtual machine instructions are dynamically translated
to sequences of host machine instructions. Examples of

Overhead Reduction Techniques for Software Dynamic Translation

K. Scott#, N. Kumar+, B. R. Childers+, J. W. Davidson*, and M. L. Soffa+

#Google, Inc.
New York, New York
jks6b@virginia.edu

+Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
{naveen,childers,soffa}@cs.pitt.edu

*Dept. of Computer Science
University of Virginia

Charlottesville, VA 22904
jwd@virginia.edu

this application of SDT are Embra (which virtualizes
the MIPS instruction set running on IRIX) [22], Shade
(which runs on the SPARC and virtualizes both the
SPARC and MIPS instruction sets) [7], VMware (which
virtualizes either Windows or Linux) [14], and Plex86
(which virtualizes Windows for execution under Linux)
[13].

The preceding applications of SDT can benefit from
reductions of dynamic translation overhead. Reducing
overhead improves overall application performance,
allows SDT systems to implement additional function-
ality (e.g., additional optimizations, more detailed pro-
filing, etc.), and enables uses of SDT in new application
areas. In this paper, we describe several techniques for
reducing the overhead of SDT. Using Strata, a frame-
work we designed for building SDT systems, we per-
formed experiments to identify and measure sources of
SDT overhead. We observed that SDT overhead stems
from just a few sources, particularly the handling of
indirect control transfers and instruction cache effects.
Using our measurements as a guide, we implemented
techniques for reducing SDT overhead associated with
indirect control transfers. The resulting improvement in
overhead for non-optimizing SDT averages a factor of
three across a broad-range of benchmark programs, and
in some cases completely eliminates the overhead of
non-optimizing SDT.

2. Software dynamic translation

Software dynamic translation can affect an execut-
ing program by inserting new code, modifying some
existing code, or controlling the execution of the pro-
gram in some way. As part of the Continuous Compila-
tion project at the University of Virginia and the
University of Pittsburgh [6], we have developed a
reconfigurable and retargetable SDT system [16],
called Strata, which supports many SDT applications,
such as dynamic optimization, safe execution of
untrusted binaries [15], code decompression [17], and
program profiling [12]. It is available for many plat-
forms, including SPARC/Solaris 9, x86/Linux, MIPS/
IRIX, and MIPS/Sony Playstation 2.

To realize a specific dynamic translator Strata basic
services are extended to provide the desired functional-
ity. The Strata basic services implement a simple
dynamic translator that mediates execution of native
application binaries with no visible changes to applica-
tion semantics, and no aggressive attempts to optimize
application performance.

Figure 1 shows the high-level architecture of Strata.
Strata provides a set of retargetable, extensible, SDT
services. These services include memory management,

fragment cache management, application context man-
agement, a dynamic linker, and a fetch/decode/translate
engine.

Strata has two mechanisms for gaining control of an
application. The application binary can be rewritten to
replace the call to main() with a call to a Strata entry
point. Alternatively, the programmer can manually ini-
tiate Strata mediation by placing a call to
strata_start() in their application. In either case,
entry to Strata saves the application state, and invokes
the Strata component known as the fragment builder.
The fragment builder takes the program counter (PC) of
the next instruction that the program needs to execute,
and if the instruction at that PC is not cached, the frag-
ment builder begins to form a sequence of code called a
fragment. Strata attempts to make these fragments as
long as possible. To this end, Strata inlines uncondi-
tional PC-relative control transfers1 into the fragment
being constructed. In this mode of operation, each frag-
ment is terminated by a conditional or indirect control
transfer instruction2. However, since Strata needs to
maintain control of program execution, the control
transfer instruction is replaced with a trampoline that
arranges to return control to the Strata fragment builder.
Once a fragment is fully formed, it is placed in the frag-
ment cache.

The transfers of control from Strata to the applica-
tion and from the application back to Strata are called
context switches. On context switch into Strata via a

1On many architectures, including the SPARC, this includes
unconditional branches and direct procedure calls.

2The dynamic translator implementor may choose to override this
default behavior and terminate fragments with instructions other than
conditional or indirect control transfers.

Figure 1: Strata virtual machine

Application Binary

Operating System

CPU

Context
Capture

New
PC

Context
Switch

Cached? New
Fragment

Fetch

Decode

Translate

Next PC

Dynamic Translator

Finished?

trampoline, the current PC is looked up in a hash table
to determine if there is a cached fragment correspond-
ing to the PC. If a cached fragment is found, a context
switch to the application occurs. As discussed below,
context switches are a large part of SDT overhead.

3. Dynamic overhead reduction techniques

Overhead in SDT systems can degrade overall sys-
tem performance substantially. This is particularly true
of dynamic translators which do not perform code opti-
mizations to offset dynamic translation overhead. Over-
head in software dynamic translators can come from
time spent executing instructions not in the original
program, from time lost due to the dynamic translator
undoing static optimizations, or from time spent medi-
ating program execution.

3.1. Methodology

To characterize overhead in such an SDT, we con-
ducted a series of experiments to measure where our
SDT systems spend their time. Our experiments were
conducted with an implementation of Strata (called
“Strata-SPARC”) for the Sun SPARC platform. The
experiments were done on an unloaded SUN 400MHz
UltraSPARC-II with 1GB of main memory. The basic
Strata-SPARC dynamic translator does no optimization.
All experiments were performed using a 4MB fragment
cache which is sufficiently large to hold all executed
fragments for each of the benchmarks. Benchmark pro-
grams from SPECint2K1 were compiled with Sun’s C
compiler version 5.0 with aggressive optimizations (-
xO4) enabled. The resulting binaries were executed
under the control of Strata-SPARC. We used the
SPECint2K training inputs for all measurement runs.

3.2. Fragment linking

In Strata’s basic mode of operation, a context switch
occurs after each fragment executes. A large portion of
these context switches can be eliminated by linking
fragments together as they materialize into the fragment
cache. For instance, when one or both of the destina-
tions of a PC-relative conditional branch materialize in
the fragment cache, the conditional branch trampoline
can be rewritten to transfer control directly to the

appropriate fragment cache locations rather than per-
forming a context switch and control transfer to the
fragment builder.

Figure 2 shows the slowdown of our benchmark pro-
grams when executed under Strata with and without
fragment linking. Slowdowns are relative to the time to
execute the application directly on the host CPU. With-
out fragment linking, we observed very large slow-
downs—an average of 22.9x across all benchmarks.
With fragment linking, the majority of context switches
due to executed conditional branches are eliminated.
The resulting slowdowns are much lower, but still
impractically high—an average of 4.1x across all
benchmarks—and requires other mechanisms to lower
the overhead further.

3.3. Indirect branch handling

The majority of the remaining overhead after apply-
ing fragment linking is due to the presence of indirect
control transfer instructions. Because the target of an
indirect control transfer is only known when the branch
executes, Strata cannot link fragments ending in indi-
rect control transfers to their targets. As a consequence,
each fragment ending in an indirect control transfer
must save the application context and call the fragment
builder with the computed branch-target address. The
likelihood is very high that the requested branch target
is already in the fragment cache, so the builder can
immediately restore the application context and begin
executing the target fragment. The time between reach-
ing the end of the indirect control transfer and begin-
ning execution at the branch target averages about 250
cycles on the SPARC platform that we used for our
experiments. For programs that execute large numbers

1The benchmarks eon and crafty were not used in our experi-
ments. We chose to eliminate these two programs since eon is a C++
application and crafty requires 64-bit C longs, neither of which were
supported by the compiler and optimization settings used for the rest
of the benchmarks.

Figure 2: Overhead reduction with frag-
ment linking.

0
5

10
15
20
25
30
35
40

 b
zi

p2

 c
c1

 g
ap

 g
zi

p

 m
cf

 p
ar

se
r

 p
er

lb
m

k

 tw
ol

f

 v
or

te
x

 v
pr

Sl
ow

do
w

n

Fragment Linking Nothing

of indirect control transfer instructions, the overhead of
handling the indirect branches can be substantial.

On the SPARC, indirect control transfers fall into
two categories—function call returns and other indirect
branches. Figure 3 shows the number of context
switches to Strata due to either returns or other indirect
branches. It is clear from this figure that the mix of indi-
rect control transfers is highly application dependent. In
the benchmarks gzip, parser, vpr, and bzip2, almost all
indirect control transfers executed are returns with a
few non-return indirect branches. In contrast cc1, per-
lbmk, and gap execute a sizeable fraction of indirect
control transfers that are not returns. These applications
contain many C switch statements that the Sun C com-
piler implements using indirect branches through jump
tables. In the remaining applications, mcf, vortex and
twolf, most control transfers are returns and a very
small portion are indirect branches.

To improve Strata overhead beyond the gains
achieved from fragment linking we must either find a
way to reduce the latency of individual context
switches to Strata, or we must reduce the overall num-
ber of switches due to indirect control transfers. The
code which manages a context switch is highly-tuned,
hand-written assembler. It is very unlikely that we can
reduce execution time of this code significantly below
the current 250 cycles. However, we have developed
some highly effective techniques for reducing the num-
ber of context switches due to indirect control transfers.

3.3.1. Indirect branch translation cache

The first technique that we propose for reducing the
number of context switches due to indirect control
transfer is the indirect branch translation cache (IBTC).

An IBTC is a small, direct-mapped cache that maps
branch-target addresses to their fragment cache loca-
tions. We can choose to associate an IBTC with every
indirect control transfer instruction or just with non-
return control transfer instructions. An IBTC in many
respects is like the larger lookup table that the fragment
builder uses to locate fragments in the fragment cache.
However, an IBTC is a simpler structure, and much
faster to consult. An IBTC lookup requires a few
instructions which can be inserted directly into the frag-
ment, thereby avoiding a full context switch.

The inserted code saves a portion of the application
context and then looks up the computed indirect branch
target in the IBTC. If the branch target matches the tag
in the IBTC (i.e., a IBTC hit), then the IBTC entry con-
tains the fragment cache address to which the branch
target has been mapped. The partial application context
is restored, and control is transferred to the branch tar-

Figure 3: Causes of context switches (with
fragment linking enabled)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 g
zi

p

 v
pr

 c
c1

 m
cf

 p
ar

se
r

 p
er

lb
m

k

 g
ap

 v
or

te
x

 b
zi

p2

 tw
ol

f

Pe
rc

en
t o

f T
ot

al
 S

w
itc

he
s

IBRANCH Sw itches Return Sw itches

(a) Miss rate with non-return indirect branches

(b) Miss rate with all indirect branches
Figure 4: IBTC miss rates.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

 b
zi

p2

 c
c1

 g
ap

 g
zi

p

 m
cf

 p
ar

se
r

 p
er

lb
m

k

 tw
ol

f

 v
or

te
x

 v
pr

512 256 64 16 4

0%
5%

10%
15%
20%
25%
30%
35%

 b
zi

p2

 c
c1

 g
ap

 g
zi

p

 m
cf

 p
ar

se
r

 p
er

lb
m

k

 tw
ol

f

 v
or

te
x

 v
pr

512 256 64 16 4

get in the fragment cache. An IBTC hit requires about
15 cycles to execute, an order of magnitude faster than
a full context switch. On an IBTC miss, a full context
switch is performed and the Strata fragment builder is
invoked. In addition to the normal action taken on a
context switch, the address that produced the miss
replaces the old IBTC entry. Subsequent branches to
this location should hit in the IBTC.

Figure 4 shows the miss rates for various IBTC
sizes. Figure 4a shows miss rates when only non-return
indirect control transfers are handled with IBTCs. Fig-
ure 4b shows miss rates when all indirect control trans-
fers are handled with IBTCs. When returns are
included, the higher volume of indirect control transfers
result in capacity and conflict misses that push the over-
all IBTC miss rate higher. Not surprisingly, miss rates
are also higher when using smaller IBTC sizes. Gener-
ally, once IBTC size exceeds 256 entries improvements
in miss rate begin to level off for most programs.

The performance benefits of an IBTC are substan-
tial. In Figure 5, the white bar shows application slow-
downs when using fragment linking and 512-entry
IBTCs to handle indirect control transfers, including
returns (the other results in Figure 5 will be discussed in
Section 3.3.2). The average slowdown across all bench-
marks is 1.7x which is significantly better than the aver-
age 4.1x slowdown observed with fragment linking
alone. As we would expect, the largest slowdowns are
observed in programs with large numbers of frequently
executed switches such as perlbmk, cc1, and gap.

3.3.2. Fast returns

Although the IBTC mechanism yields low miss
rates, due to the large percentage of executed returns

and the overhead of the inserted instructions to do the
IBTC lookup, handling returns is still a significant
source of application slowdown. Reducing IBTC-
related overhead by handling returns using a lower cost
method is desirable.

We can eliminate the overhead of IBTC lookups for
returns and just execute the return instruction directly
by rewriting calls to use their fragment cache return
addresses, rather than their normal text segment return
addresses. Thus, when the return executes it jumps to
the proper location in the fragment cache. This tech-
nique is safe if the application does not modify the
caller’s return address before executing the callee’s
return. While it is possible to write programs that do
modify the return address before executing the return,
this is a violation of the SPARC ABI that compilers and
assembly language programmers avoid.

The bar labeled “Fast Returns” in Figure 5 shows the
application slowdown with fragment linking, no IBTC,
and fast returns. The average slowdown across all
benchmarks is about 1.8x which is slightly higher than
the slowdowns obtaining using IBTC alone. The reason
for this greater slowdown is that we are eliminating all
return induced context switches, but context switches
for other indirect branches remain. In applications
where a substantial portion of the indirect control trans-
fers are non-returns, those non-return indirect control
transfers increase Strata overhead significantly.

It is possible to combine fast returns with IBTC to
further reduce overhead to remedy this situation. The
bar labeled “Fast Returns + IBTC” in Figure 5 shows
the slowdowns using fragment linking, fast returns, and
512 entry IBTCs for non-return indirect branches. The
slowdowns, averaging 1.3x, are lower than either fast
returns or IBTC alone.

4. Static overhead reduction techniques

While dynamic techniques can be used to tackle
SDT overheads, an alternative approach can use static
knowledge about a program to plan for run-time execu-
tion. This “planning approach” has less run-time analy-
sis and code generation overhead because decisions are
made off-line. In this section, we describe a first prelim-
inary step toward using static knowledge to reduce the
overhead of SDT. Similar to the dynamic overhead
reduction techniques described in Figure 3, our initial
approach tries to reduce the cost of context switches. It
also tries to improve instruction cache locality.

Our approach uses “static plans” generated by the
compiler to determine fragment code traces that reduce
context switches due to indirect branches and improve
instruction cache locality. Here, the compiler deter-

Figure 5: Overhead Reduction with IBTC

0

1

2

3

4

5

 b
zi

p2

 c
c1

 g
ap

 g
zi

p

 m
cf

 p
ar

se
r

 p
er

lb
m

k

 tw
ol

f

 v
or

te
x

 v
pr

Sl
ow

do
w

n

Fast Returns + IBTC Fast Returns IBTC

mines a “static plan” that identifies instruction traces at
compile time, which can be used by SDT at run-time.

An instruction trace is a sequence of instructions on
a hot path. Instruction traces improve the performance
of a program by improving the hardware instruction
cache locality, thereby reducing instruction cache
misses. These traces can be determined by profiling a
program, which can be done online as well as offline.
Online profiles potentially have a high cost because
dynamic instrumentation code must be used to deter-
mine instruction traces. Also, online profiles have a
“lost opportunity cost”, since past history must be col-
lected to identify candidate (hot) traces.

To reduce the instrumentation and opportunity cost
of finding candidate traces, the same information can be
collected offline. With an offline profile, instruction
traces can be identified by the compiler and preloaded
into the fragment cache for subsequent execution of the
program. The disadvantage of this technique is that the
offline traces may not match the actual behavior of the
program, particularly when the input data has a large
influence on the program’s execution.

Our technique uses an algorithm that we call “next
heaviest edge” (NHE) to determine the traces to be pre-
loaded into the fragment cache. NHE forms traces by
starting with a seed edge from a profile that has the
heaviest weight and the blocks associated with this
edge are added to the trace. NHE adds new blocks to
the trace by selecting the successor and the predecessor
edges with the heaviest weights until an end of trace
condition is encountered. The end of trace condition
considers the significance of successor and predecessor
edges, code duplication, and the size of a trace.

The NHE algorithm forms instruction traces across
indirect branches. The algorithm identifies such control
transfers when forming traces and predicts that an indi-
rect transfer will “stay on trace”. Because the exact tar-
get address of an indirect branch is not known until run-
time, checking code is emitted in the trace at each indi-
rect branch. This check verifies that the target address
of an indirect branch is indeed the next subsequent
block on the trace. If the block is not on the trace, a con-
text switch is made into Strata to handle the indirect
transfer. Our preliminary implementation does not
attempt to reduce the number of context switches due to
trace mispredictions (i.e., when going off the trace).
However, in practice, an indirect branch is likely to
have multiple possible targets, which means an inordi-
nate number of context switches may occur into Strata.

To investigate the overhead reduction with static
traces, we profiled several SPEC2K benchmarks with
the training data set. The profile was used to determine
instruction traces with NHE. These traces were saved in
a file that is preloaded whenever Strata-SPARC is

invoked. In the subsequent run, we used the reference
input set from SPEC2K for each benchmark.

Figure 6 shows the slowdown of preloading traces
with Strata over not preloading the traces with Strata.
The numbers in this graph were run on a Sun Blade 100
with a 500 MHz UltraSPARC IIi, 256 MB memory, and
gcc 3.1 with optimization level -O3. The overhead
numbers for fragment linking are different in this graph
than in Figure 2 due to the different machine platform.

Figure 6 shows that static trace formation improves
performance by reducing the number of context
switches due to indirect transfers and instruction cache
misses. The performance improvement over fragment
linking ranges from 0% to 39%, with an average of
15%. From our experiments, the improvement is due to
both a reduction in the number of context switches and
instruction cache misses. However, the improvement is
not as large as using the IBTC and fast returns (see Sec-
tion 3.3). The improvement with static trace formation
is influenced by the prediction accuracy of the statically
formed traces. In the current scheme, the accuracy is
moderate, with most traces being exited early.

 One way to improve the current scheme is to com-
bine it with an IBTC and Fast Returns. In this case,
when the run-time check on the indirect branch finds
that the transfer is off trace, the IBTC can be consulted
to find the target address without a context switch into
Strata. We are implementing this scheme and expect it
to do better than the IBTC and fast returns alone
because the scheme also addresses instruction cache
locality. Our initial results, however, are encouraging
because they show that static information can be effec-
tively used to reduce the overhead of SDT.

Figure 6: Performance improvement with static
trace formation

0

1

2

3

4

5

6

7

bz
ip

cc
1

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rte

x

vp
r

Sl
ow

do
w

n

Fragment Linking Static trace formation

5. Related work

Software dynamic translation has been used for a
number of purposes (see Section 1), including dynamic
binary translation of one machine instruction set to
another [4,8,10,20], emulation of operating systems
(e.g., VMWare, Plex86), and machine simulation
[7,22]. While most of these systems have been built for
a single purpose, there has been recent work on general
infrastructures for SDT that are similar to Strata.

Walkabout is a retargetable binary translation frame-
work that uses a machine dependent intermediate repre-
sentation to translate and execute binary code from a
source machine on a host machine [5]. It analyzes the
code of the source machine to determine how to trans-
late it to the host machine or to emulate it on the host.
Walkabout uses machine specifications to describe the
syntax and semantics of source and host machine
instructions and how to select hot paths. The current
implementation supports only binary translation and
has been ported to the SPARC and the x86 architec-
tures. Yirr-Ma is an improved binary translator built
with the Walkabout infrastructure [19].

Another flexible framework for SDT is DynamoRIO
[2], which is a library and set of API calls for building
SDTs on the x86. One such system built with Dynamo-
RIO addresses code security. Unlike Strata, to the best
of our knowledge, DynamoRIO was not designed with
retargetability in mind. Another difference is that
DynamoRIO is distributed as a set of binary libraries.
The source code is available for Strata, making it possi-
ble to modify and experiment with the underlying infra-
structure to implement new SDT systems.

To achieve high performance in a SDT system, it is
important to reduce the overhead of the translation step.
For a retargetable and flexible system like Strata, it can
be all the more difficult to achieve good performance
across a variety of architectures and operating systems.
A number of SDT systems have tackled the overhead
problem. For example, Shade [7] and the Embra [22]
emulator use a technique called chaining to link
together cache-resident code fragments to bypass trans-
lation lookups. This technique is similar to one of the
overhead reduction techniques in Strata that links a
series of fragments to avoid context switches.

Other systems tackle the overhead of translation by
doing the translation concurrently on a processor sepa-
rate from the one running the application [21]. One of
the major sources of overhead in a system like Strata
are indirect branches.

Consequently both Dynamo [1] and Daisy [10] con-
vert indirect branches to chains of conditional branches
to improve program performance. These chains of con-
ditional branches are in a sense a simple cache for indi-

rect branch targets. But rather than eliminate context
switches as the IBTC does, the conditional branch
chains remove indirect branch penalties and increase
available ILP by permitting speculative execution.
Since the conditional branch chains must be kept rela-
tively short to maintain any increases in performance,
an indirect branch typically terminates the conditional
branch chain to handle the case when none of the condi-
tional branch comparisons actually match the branch-
target address. In the case of programs containing
switch statements with large numbers of frequently exe-
cuted cases, e.g., cc1 and perlbmk, the conditional
branch comparisons will frequently not match the
branch-target address resulting in a context switch. In
Strata, the IBTC addresses this problem by accommo-
dating a large number of indirect branch targets for each
indirect branch. In our approach fewer context switches
are performed, while their approach yields superior
pipeline performance when the branch target is one of
the few in the conditional branch chain.

6. Summary

Reducing the overhead of software dynamic transla-
tion (SDT) is critical for making SDT systems practical
for use in production environments. Using the
SPECint2K benchmarks, we performed detailed mea-
surements to determine major sources of SDT over-
head. Our measurements revealed that the major source
of SDT overhead comes from handling conditional and
indirect branches. For example, conditional branches,
when handled naively, can result in slowdowns as much
34 times (average 22x) over a directly executed binary.

Guided by our measurements, we developed tech-
niques to reduce these overheads. One technique, called
fragment linking, reduces overhead caused by condi-
tional branches by rewriting the trampoline code to
transfer control directly to the appropriate fragment
rather than doing a context switch. This technique
reduces SDT overhead by a factor of 5 (22x to 4x).

Our measurements also showed that indirect
branches were a significant source of overhead. To
reduce the number of context switches caused by indi-
rect branches, we used an indirect branch translation
cache. This cache maps indirect branch-target addresses
to their fragment cache location. With a small 512-entry
cache, the overall slowdown was further reduced from
an average 4.1x to an average of 1.7x.

To reduce overheads further, we developed a tech-
nique to better handle indirect branches that were gen-
erated because of return statements. For function
returns where the fragment cache holds the return
address, function returns can be rewritten to return

directly to the fragment cache return address thereby
avoiding a context switch. This technique reduced the
SDT slowdown to an average of 1.3x.

 Finally, we investigated the usefulness of determin-
ing instruction traces statically and using this informa-
tion to reduce the number of context switches and
improving instruction cache locality. This technique
resulted in a performance improvement of up to 39%
(average 15%) over fragment linking. Our preliminary
results demonstrate that static information can be suc-
cessfully used to guide SDT and reduce its overhead.

While overheads in the range 2 to 30 percent (with
no other optimizations applied) may be acceptable for
some applications, for other applications even a modest
slowdown is unacceptable. We are continuing to
develop other techniques for reducing SDT overhead.
Preliminary results indicate that by applying the tech-
niques described here along with some dataflow analy-
sis of the executable, it may be possible to eliminate
SDT overhead entirely. If achieved, this would make
SDT a powerful tool for helping software developers
achieve a variety of important goals including better
security, portability, and better performance.

7. Acknowledgements

This work was supported in part by National Science
Foundation, Next Generation Software, grants CNS–
0305198, CNS–0305144, CNS–0203945 and CNS–
0203956.

8. References

[1] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
transparent dynamic optimization system”, ACM Conf.
on Programming Language Design and Implementa-
tion, pp. 1–12, 2000.

[2] D. Bruening, T. Garnett, and S. Amarasinghe, “An
infrastructure for adaptive dynamic optimization”,
Int’l. Symp. on Code Generation and Optimization,
March 2003.

[3] W-K Chen, S. Lerner, R. Chaiken, and D. Gillies,
“Mojo: A dynamic optimization system”, Workshop on
Feedback-Directed and Dynamic Optimization, 2000.

[4] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N.
Rubin, T. Tye, S. B. Yadavalli, and J. Yates, “FX!32: A
profile-directed binary translator”, IEEE Micro, 18(2),
pp. 56–64, April 1998.

[5] C. Cifuentes, B. Lewis, and D. Ung, “Walkabout—A
retargetable dynamic binary translation framework”,
Workshop on Binary Translation, 2002.

[6] B. Childers, J. Davidson, and M. L. Soffa, “Continuous
compilation: A new approach to aggressive and adap-
tive code transformation”, NSF Next Generation Soft-

ware Workshop, during the Int’l. Parallel and
Distributed Processing Symposium, April 2003.

[7] B. Cmelik and D. Keppel, “Shade: A fast instruction-
set simulator for execution profiling”, ACM SIGMET-
RICS Conf. on the Measurement and Modeling of
Computer Systems, pp. 128–137, 1994.

[8] J. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T.
Kistler, A. Klaiber, and J. Mattson, “The Transmeta
Code Morphing Software: Using speculation, recov-
ery, and adaptive retranslation to address real-life chal-
lenges”, Int’l. Symp. on Code Generation and
Optimization, March 2003.

[9] E. Duesterwald and V. Bala, “Software profiling for
hot path prediction: Less is more”, Conf. on Architec-
tural Support for Programming Languages and Oper-
ating Systems, pp. 202–211, November 2000.

[10] K. Ebcioglu and E. Altman, “DAISY: Dynamic compi-
lation for 100% architecture compatibility”, 24th Int’l.
Symp. on Computer Architecture, pp 26–37, 1997.

[11] K. Ebcioglu, E. Altman, S. Sathaye, and M. Gschwind,
“Optimizations and oracle parallelism with dynamic
translation”, Int’l. Symp. on Microarchitecture, pp.
284–295, 1999.

[12] N. Kumar and B. Childers, “Flexible instrumentation
for software dynamic translation”, Workshop on
Exploring the Trace Space, during the Int’l. Confer-
ence on Supercomputing, 2003.

[13] Plex86, http://www.plex86.org
[14] M. Rosenblum, “Virtual platform: A virtual machine

monitor for commodity PCs”, Hot Chips 11, 1999.
[15] K. Scott and J. Davidson, “Safe virtual execution using

software dynamic translation”, In Annual Computer
Security Application Conference, 2002.

[16] K. Scott, N. Kumar, S. Velusamy, B. R. Childers, J. W.
Davidson, and M. L. Soffa, “Retargetable and recon-
figurable software dynamic translation”, Int’l. Symp.
on Code Generation and Optimization, March 2003.

[17] S. Shogan and B. Childers, “Compact binaries with
code compression in a software dynamic translator”,
Design Automation and Test in Europe, 2004.

[18] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary
translation in a distributed environment”,Technical
Report MSR–TR–2001–50, Microsoft Research,
2001.

[19] J. Troger and J. Gough, “Fast dynamic bianry transla-
tion—The Yirr-Ma framework”, In. Proc. of the 2002
Workshop on Binary Translation, 2002.

[20] D. Ung and C. Cifuentes, “Machine-adaptable
dynamic binary translation”, Proc. of the ACM Work-
shop on Dynamic Optimization, 2000.

[21] M. Voss and R. Eigenmann, “A framework for remote
dynamic program optimization”, Proc. of the ACM
Workshop on Dynamic Optimization, 2000.

[22] E. Witchel and M. Rosenblum, “Embra: Fast and flexi-
ble machine simulation”, Proc. of the ACM SIGMET-
RICS Int’l. Conf. on Measurement and Modeling of
Computer Systems, pp. 68–79, 1996.

