
1

FPO: A Framework for Predicting the Impact of Optimizations

Min Zhao Bruce Childers Mary Lou Soffa

Department of Computer Science
University of Pittsburgh, Pittsburgh, 15260

{lilyzhao, childers, soffa} @ cs.pitt.edu

ABSTRACT
When applying optimizations, a number of decisions are made
using fixed strategies, such as always applying an optimization if
it is applicable, applying optimizations in a fixed order and
assuming a fixed configuration for optimizations such as tile size
and loop unrolling factor. In this paper, we present a framework
that enables these decisions to be made based on predicting the
impact of an optimization, taking into account resources and code
context. The framework consists of optimization models, code
models and resource models, which are integrated for predicting
the impact of applying a set of optimizations. In this paper, we
focus on cache performance and present an instance of the
framework for cache. Since most opportunities for cache
improvement come from loop optimizations, we describe code,
optimization and cache models tailored to predict the benefit of
optimizations for data locality. Experimentally we demonstrate
that always applying an optimization when it is safe can degrade
performance. We then show the improvement of applying an
optimization only when our framework indicates it will be
beneficial. The accuracy of our framework ranges from 100% to
82%. We also show that our framework can be used to choose the
most beneficial optimization when a number of optimizations can
be applied to a loop nest. And lastly, we show that we can use the
framework to combine optimizations on a loop nest. The
framework is general and can be used for other problems such as
determining the best order of optimizations for a code segment by
providing an objective function to use with search techniques.

1. INTRODUCTION
Although many types of optimizations1 have been applied by
optimizing compilers for over 40 years, certain performance
problems of optimizations have yet to be adequately addressed. It
is well known in the compiler community that optimizations may
degrade performance in certain circumstances, but we can not
determine when this might happen and choose not to apply the
optimization. Another problem is the combination of
optimizations, which in some cases, leads to better performance
than the individual application of an optimization [SR92, CC95].
However, we do not have a systematic way of determining if and
which combinations of optimizations are helpful. We also know
that optimizations enable and disable optimizations so the order of
application of optimizations can have an impact on performance
[WS97, ZCW02, CST01]. That is, when there is more than one
optimization that is applicable, one of them may be more valuable
to apply than the others. Ideally, we would like to select the one
that has the biggest impact. Also, because of the interactions, the
order of applying optimizations from a suite of optimizations can
have an impact on performance [ZCW02, WS97]. Typically, the
compiler designer decides on an optimization order using her

experience and just applies optimizations in that order. Lastly, the
configuration of a particular optimization can impact performance
(e.g., how many times to unroll a loop, tile size, etc.) [MCT96,
HKVI02]. In all of these cases, although we have techniques for
handling some of these problems in isolation, there is no general,
uniform way to effectively address the problems.
Ideally, we would like to be able to predict the performance
impact of optimizations before applying them to evaluate their
efficacy. Such a capability has become all the more important in
recent years with the tremendous growth in cost-sensitive
embedded systems, where achieving the very best performance is
paramount. Prediction is difficult because the impact of a given
optimization varies markedly and is determined by a number of
factors, including the target machine architecture (e.g., cache
configuration and the number of available registers), the
optimization configuration, and the code context where the
optimization is applied. What is needed is a uniform way of
expressing the variations that is useful for predicting the impact of
optimizations.

In this paper, we present a Framework for Predicting the impact
of Optimizations (FPO) for some objective (e.g., performance,
code size or energy). The framework consists of three types of
models: optimization models, code application models and
resource models. Although resource models have been developed
and used successfully [MCT96, GMM99], to our knowledge, this
work presents the first models of optimizations. The structure of
our framework, as shown in Figure 1, includes: (1) optimization
models that represent the characteristics of the optimizations in
terms of how they will impact an objective, both qualitatively and
quantitatively, (2) resource models that parameterizes the target
machine configuration, and (3) application code models that
abstract information about the application. By integrating the
models, a “benefit” value is produced that represents the benefit
of applying an optimization in a code context with the objective
represented by the resource.
Based on predictions from our framework, the problems listed
above can be tackled. Using particular optimization, resource, and
code models, the framework can be used to predict whether it is
beneficial or not to apply the optimization in the code context.
The optimization models (different configurations or different
optimizations) can be combined and thus we can predict the
benefit of combining optimizations rather than applying them one
at a time. When more than one optimization can be applied in a
code segment, the framework can be used to predict the best one
to apply. Lastly, the prediction value can be used as an objective
function when using search techniques such as genetic algorithms
and AI planning.

1We do not distinguish between code optimizations and transformations.

2

Figure 1: FPO- Prediction Framework

Source Code

Prediction

Resource Models
….

Application
Code Models

Optimization Models
……

OP1 OPm

RM1 RMn

In this paper, we focus on using the framework to predict the
impact on cache performance. Since many factors impact the
overall performance of a program, including cache performance,
register allocation and instruction scheduling, it is very difficult to
analytically predict the impact of optimizations on performance
[CST01]. Our approach is to isolate each of these factors and
predict the impact using one factor at a time. Our work to date
has focused on predicting the optimization impact on cache
performance. If the impact on more than one performance factor
is desired, the models can combined into a single comprehensive
model.
As the disparity between processor and main memory speed
increases by approximately 50 percent per year, the use of caches
with high hit rates has become critical for performance [GMM99].
Data caches are designed to exploit locality, and naturally they
work best for programs that have high locality. Some
optimizations are designed to improve cache performance by
rearranging code to have better locality. However, other
optimizations are not designed specifically for this purpose and
may negatively impact cache performance and the overall
performance. We develop optimization and program code models
that can be used to predict the performance impact of applying an
optimization on the cache. Since loop behavior dominates cache
performance [MT96], we focus on loop optimizations: our
optimization and code models represent the characteristics of the
loops and optimizations that impact cache performance. We also
use a model of cache behavior for the array referencing pattern
that estimates the cache cost of executing code a code segment.
After determining the impact of an optimization on cache
performance using the models, the code optimizer can decide
whether it is beneficial to apply the optimization, or given a set of
valid optimizations, decide which one should be applied for the
best cache performance.

We first describe an instance of FPO for cache performance. We
experimentally evaluate the framework for determining when to
apply an optimization, how to combine optimizations and what
order to apply them. We present experimental results that indicate
that always applying an optimization can, in fact, degrade
performance. Using our framework, we experimentally show the

accuracy of FPO for predicting cache performance. We also
describe the performance improvement of selectively applying an
optimization only when a prediction indicates an improvement.
We demonstrate the usefulness of FPO for predicting the impact
of combining optimizations and for choosing the most beneficial
optimization, given a number of optimizations that can be applied.
In our experiments, we considered loop interchange, loop
unrolling, loop tiling, loop fusion, loop distribution and loop
reversal [BGS94]. Our experimental results indicate that our
technique is useful for predicting the impact of optimizations on
cache and for selecting the most beneficial optimization.
Interestingly, our results also demonstrate that different
optimizations should be applied at the same program point based
on the context, such as loop trip count.

The contributions of this paper include:
• A unique framework that integrates optimization,

resource and application models to predict the impact of
optimizations without applying them,

• An instance of that framework for predicting the impact
of loop optimizations on cache,

• The first analytical optimization models that capture the
characteristics of the optimizations as to how they
impact cache performance,

• A code model that captures the aspects of a loop that are
impacted by loop optimizations,

• Experimental results showing that always applying
optimizations does degrade cache performance and that
better performance can be achieved by using our
framework to selectively apply optimizations when
there is a predicted benefit, and

• Demonstration of the usefulness of the framework in
combining optimizations and selecting the best
optimization to apply.

In the next section, we provide an overview of FPO and describe
our technique to predict the impact of optimizations on cache
performance, including our code model, optimization models and
cache model. Experimental results are reported in Section 3.
Related work is briefly given in Section 4, followed by
conclusions in Section 5.

2. FPO FOR CACHE PERFORMANCE
To predict the impact of optimizations on cache locality, we first
extract information about a loop nest and represent it with a code
model. We consider the loop nests because they dominate cache
performance for a given code [MT96]. We assume the array is
arranged in row-order without loss of generality. Next, we use
optimization models to express the characteristics that affect
cache performance for an individual optimization. We then use a
cache model to estimate the cache cost in terms of cache misses
of executing a code. If it is safe to apply an optimization in a code
segment, we first predict the benefit of applying the optimization
in a particular code context. The prediction is done by integrating
the optimization models and the cache model. In the next
sections, we present our models for optimization and cache. We
begin our discussion with our code model.

2.1 Code Model
In order to predict the impact of optimizations on cache
performance, we need to express those code characteristics that

3

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)

 a[i] = a[i] + b[j][i]*c[i][j]+c[i+1][j];

(a) Original loop nest

() () () () ()aaccccbbaa
NN

CACACACACA ,,,,,,,,, 2211

0 0
1

1

1 0
1

1

∫∫
−−

(b) Code model for the loop nest

Figure 2. A loop nest and its code model

affect the cache, which are a loop’s header and the sequence of
array references in a loop body.

DEF 1 A loop header, ∫
lb

step
ub

, consists of a lower bound (lb), upper

bound (ub), and iteration step (step).

DEF 2 A reference is a static read or write in the program, while
a particular execution of that read or write at run time is a
memory access [GMM99].

DEF 3 An array reference is a reference that refers to an array
element and includes the name of the array and its access function
(subscript). Because optimizations usually change the access
functions (and not the name of the array), we use an

equation, CIARef +×= , to represent the access function of an

array reference. Here, A is the access matrix, I is the loop index

vector and C is the constant vector [HKVI02]. This equation can
be written as:

1

0

1

0

)1)(1(0)1(

)1(000

1

0
















+
















×
















=

















−−−−

−

− dN-Ndd

N

d C

C

I

I

AA

AA

sub

sub
MM

L

MOM

L

M

In our model, we use the access matrix (A) and constant vector

(C) to represent an array reference. The loop index variables, I ,
are represented by the loop header.

DEF 4 An array reference sequence, 〉〈R , consists of all array
references in a loop body in the order that they appear textually in
the code.

DEF 5 A loop, 〉〈∫ R
lb

step
ub

 , consists of its header and array

reference sequence.

DEF 6 A perfect loop nest, 〉〈∫∫∫
−

R
lb

step
ub

lb
step
ub

N lb
step
ub

011

L , is a

sequence of loops enclosing the same array reference sequence.
Although all of the loop nests that we consider in this paper are
perfect loop nests, our technique can be extended to handle other

nested loops by including the loop index I in every array
reference.

DEF 7 A loop nest sequence, 〉〈=〉〈 K,ln,lnLN 21 , is a sequence
of loop nests in the order they appear in the code. A loop nest
sequence that has one loop nest is the loop nest itself.

Figure 2 shows an example of a loop nest and its code model,
where (Aa, Ca) represent the array reference a[i] (same with the
array references b and c.)

2.2 Optimization Models
As was said, our optimization models capture the characteristics
that affect cache, which include loop headers and array
references.

Loop headers give the total number of memory accesses for an
array reference. The loop organization and array referring pattern
determine how the memory accesses are ordered. Different orders
result in different data reuse and thus different amounts of cache
misses. Because an optimization affects the loop organization and
array references structure, we use a function to describe the
impact of an optimization.

DEF 8 Impact function of an optimization, 〉〈=〉〈 ')(LNLNfopt ,
is a function that maps an original loop nest sequence to a new
loop nest sequence.

We develop an impact function for every loop optimization
considered in this paper. In the following sections, we present our
optimization models, including the impact functions, for loop
interchange, unrolling, tiling, reversal, fusion, and distribution.

2.2.1 Loop Interchange
Loop interchange exchanges the position of two loops in a loop
nest. The optimization model for loop interchange is illustrated in
Figure 3. The impact function, finterchange, maps an original loop
nest to a new loop nest, according to the semantics of loop
interchange. Essentially this function exchanges lb, ub and step of
loop i with that of loop j. It also changes the array reference
sequence 〉〈R by a function 〉〈Rg . This function determines the
new array reference sequence for the transformed loop by
applying h(r) on every reference r in 〉〈R . Function h(r)
computes a new array reference by exchanging column i and j in
the access matrix A from r's reference equation. l(A) handles the
column interchange. The constant vector (C) for r is unchanged.

4

INPUT: 〉〈∫∫∫
−

R
N

011

L and interchange is legal for loops i, j;

∫ ∫∫ ∫∫ ∫∫ ∫
−−

〉〈=〉〈

1 01 0

)()(
N j iN i j

eInterchang RgRf LLLLLL

where 〉〉〈∈〈∀=〉〈)()()(rhRrRg ,

)),(()(CAlrh = , and

][:][][:][)(jAiAAl ↔=

Figure 3: Loop Interchange Model

Consider the example in Figure 2. Using the model in Figure 3,

we determine the new loop nest. The new header ∫ ∫
−−

j i

NN

0
1

1

0
1

1

results from ∫ ∫
−−

i j

NN

0
1

1

0
1

1
 by exchanging lb, ub, and step for loop li

and lj. The new array reference
sequence, 〉〈=〉〈 ',...,',','' 4210 rrrrR , is determined by changing
the access matrix of every array reference in 〉〈R . For example,
the access matrix of a[i] is changed from []01 to []10 and

b[j][i] is changed from 







0
1

1
0

 to 







10
01

 .

The optimization model for loop interchange determines how
reference patterns are changed. These changes potentially affect
data reuse (and hence cache misses) in two ways. First a loop’s
spatial and group temporal reuse may change. In our example,
b[j][i] in iteration (i0+1,j0) could reuse the cache line accessed by
itself in iteration (i0,j0) in the original loop nest. The reuse
distance is the number of iterations between a reuse and the
previous access. b[j][i]’s reuse distance is

N,ji, ,jidiff =+))1()((0000 . In the interchanged loop nest, b[j][i]
in iteration (j0,i0+1) could reuse the cache line accessed by itself
in iteration (j0,i0). The reuse distance changed to

1))()((10000 =+,ij, ,ijdiff . Second, group temporal reuse may
also change. In our example, the reuse distance for c[i][j] is N . In
the interchanged loop nest, it changes to 1. Decreasing the reuse
distance can greatly reduce the possibility that an intervening
memory access evicts a cache line that could be reused. Hence,
cache misses may be reduced by interchanging the two loops.

2.2.2 Loop Unrolling
Loop unrolling duplicates a loop’s body a number of times
[BGS94]. It is commonly understood that loop unrolling has little
impact on cache performance. Our approach demonstrated that
loop unrolling has no impact on cache performance when the trip
count is a multiple of unroll factor. The optimization model for
loop unrolling is shown in Figure 4.

The impact function funrollling maps an original loop nest to two
nested loops (one for the unrolled loop and one for the possible
leftover iterations) according to the semantics of loop unrolling.

In the unrolled loop nest, the step of the innermost loop is
changed to Ustep × (U is the unroll factor) and the array
reference sequence, 〉〈R , is changed by a function g, which
combines 〉〈〉〈〉〈〉〈 − 121 ,,,, URRRR L together. A reference 〉〈 iR
is determined by applying the function),(irh on every array
reference, r, in 〉〈R . Function),(irh models how the access
matrix and constant vector of a reference are changed. It keeps the
access matrix unchanged and applies l(C,i) on the constant vector.
Essentially, l(C,i) changes C by adding i to those dimensions that
have the innermost loop control variable. In the loop nest for the
leftover iterations, the lb of the innermost loop is changed to

U
U

ub
×



 +1 and the array reference sequence, 〉〈R , is

unchanged.

Use the example from Figure 2 to illustrate our model, supposing
that the unroll factor is two. With the model from Figure 4, the

unrolled loop's header becomes, ∫∫
−−

0 0
2

1

1 0
1

1 NN
, from the rolled

loop's header, ∫∫
−−

0 0
1

1

1 0
1

1 NN
, by doubling the step of the innermost

loop. The array reference sequence for the unrolled loop
is 〉〈 9,,5,,10, rrrr LL , where r5 to r9 is determined by keeping the
access matrix and changing the constant vector of r0 to r4 in 〉〈R .

For example, r6 (b[j+1][i]) has the same access matrix 







0
1

1
0

 as

1r (b[j][i]) , but a different constant vector 







0
1

. Second, we

determine the loop nest for the leftover iterations. Its loop header

INPUT: 〉〈∫∫∫
−

R
N

011

L and unroll factor U;

〉〈=〉〈∫ ∫ ∫
−

restunroll

N

unroll lnlnRf ,)(
1 1 0

L where

)(
1 1 0

〉〈= ∫ ∫ ∫
−

× Rgln
N

Ustepunroll L and

〉〈= ∫ ∫ ∫
− ×



 +

Rln
N U

U
ub

rest

1 1 0
1

L

)),()(^(^)(
1

1
〉〉〈∈〈∀〉〈=〉〈

−

=
irhRrRRg

U

i

)),(,(),(iClAirh = and

isCNaAasiCl +≠−∈∀=][})0]1][[|{(),(

Figure 4: Loop Unrolling Model

5

is ∫∫
×





−−

0 2
2

1
1

1 0
1

1

N

NN
 and its array reference sequence is the same

as 〉〈R .

2.2.3 Loop Tiling
Loop tiling improves cache reuse by dividing an iteration space
into tiles and transforming the loop nest to iterate over them
[BGS94]. The optimization model for loop tiling is shown in
Figure 5.

The impact function, ftiling, maps an original loop nest to a new
loop nest by changing its loop header by function g and changing
its array reference sequence 〉〈R by function f. Essentially,

function g adds ∫∫
−+ NnN n

n

n

lb
ts
ub

lb
ts
ub

1

1

1

1

L to the outermost and changes lb

and ub of loops to be tiled. (The input to the model specifies the
number of loops to be tiled, n, their index in the header sequence

tntt ,,2,1 L and their tile size, ntststs ,,, 21 L .) The lb of lti changes
to the control variable of lN+ti-1 (represented as xi). The ub of lti
changes to a function h(i), which gets the minimum number of
original ub and (1−+ ii tsx). On the other hand, function

)(〉〈Rf changes the access matrix (A) by function l(A) of every
array reference in 〉〈R , where function l(A) adds n columns of
zero to A’s first n columns. The constant vector (C) does not
change.

For the example in Figure 2, if we tile li and lj with tile size 64 and
64, using the model shown in Figure 5, we get the new loop header

as ∫∫∫∫
+−+−−−

0 1
1

)631,1min(

1 2
1

)632,1min(

2 0
64

1

3 0
64

1

x

xN

x

xNNN
. The access matrix of

every array reference is changed, e.g., b[j][i] is changed from









0
1

1
0

 to 







0100
1000

 .

2.2.4 Loop Reversal
Loop reversal changes the direction in which a loop traverses its
iteration range [BGS94]. The impact function for loop reversal,

freversal, changes the loop header only. It does not change the array
references sequence. The impact function simply exchanges lb
with ub of the loop to be reversed and changes the sign of its step.
Thus loop reversal has little impact on cache performance. The
optimization model for loop reversal is shown in the Appendix.

2.2.5 Loop Fusion
Loop fusion combines a number of loops into one loop. The
impact function, ffusion, maps several loop nests with the same
header to a fused loop nest. The optimization (i.e., impact
function) does not change the loop header, but does change the
array references. It combines the array reference sequences of the
loop nests in the original sequence in the order that the nests
appear in the source code. The optimization model of loop fusion
is shown in the Appendix.

Increasing the number of array references in the loop nest impacts
on cache misses as follows. First it improves the group-reuse. The
inter-loop reuses, which are seldom realized when the working set
size is very large, change to intra-loop group reuses. These reuses
may be more likely to result in a cache hit. Second, loop fusion
can increase the possibility of cache interference, which may
cause more cache misses.

2.2.6 Loop Distribution
Loop distribution divides a loop into many loops. Like loop
fusion, the impact function, fdistribution, does not change the loop
header but does change the array reference. The impact function
of loop fusion divides the array reference sequence in the original
loop nests into several sequences. How to divide the array
reference sequence is provided as an input, i.e., how to distribute
the loop nest should be known as the optimization’s parameters.
The optimization model of loop distribution is shown in the
Appendix.

2.3 Cache Model
We use a cache model to estimate the cache cost of executing a
loop nest. This model indicates how a given reference pattern
affects cache misses (and hits) under the assumption of a single
issue in-order pipelined processor with a blocking cache (see
Section 3). To improve locality, we want to reduce the number of
cache misses, and in evaluating the impact of an optimization, we
want to know whether the number of cache misses is decreased by
the optimization.

Because some array references may access the same cache line in
the same or different iteration (due to group temporal or spatial
reuse), we group references to avoid over estimating the number
of cache misses when a reference may access a cache element that
has been previously loaded. We adapt Mckinley et al.’s RefGroup
algorithm [MCT96] to formulate RefSet using our code model
representation to calculate group and temporal reuse. We
consider two references 1r (A1, C1) and 2r (A2, C2) that refer to
the same array to belong to the same RefSet if:
(1) 21 AA = , ki∀ (ik is the row index of the none-zero elements

in the last column of A1)
2 and][][121 ≤×= − dstepdi-CiC Nkk (1−Nstep is the

iteration step of the innermost loop) , and all other ip

(kp ii ≠),][][21 pp iCiC = or

INPUT: 〉〈∫∫∫
−

R
N

011

L , tiling loops tnt ,,1L , with tile

size ntsts ,,1 L respectively;

∫ ∫∫∫∫ ∫∫∫
−−

〉〈=〉〈

1 011 01

)()(
N ttnN ttn

tiling RfgRf LLLLLL where

∫∫ ∫ ∫∫∫ ∫∫∫∫
− −−+

=

01 1 1 1

)1()(

101 1

1

1

)(
N N t x

h

tn x

nh

nN N lb
ts
ub

lb
ts
ub

ttn nn

n

n

g LLLLLLL

)1,min()(−+= iii tsxubih and

〉〉〈∈〈∀=〉〈)),(()(CAlRrRf where]0[)(AAl =

Figure 5: Loop Tiling Model

6

(2) 21 A A = ,)10 (][][21 d-iiCiC <≤= , and
clsdCdC <−−−]1[]1[21 .

Condition 1 accounts for group temporal reuse, and condition 2
accounts for group spatial reuse.

Once we account for group reuse, we can calculate the cache
misses of a representative array reference, say Rα, in a RefSet.
Initially, we use McKinley et al.’s cache cost model. While their
model accurately estimated cache misses under some
circumstances, it did not have sufficient overall accuracy needed
to achieve good results for all of our optimization models. The
reason is that it handles cache conflict misses in a simple manner
and did not accurately reflect all possible sources of conflict
misses.

Cache conflicts are difficult to predict and estimate [TFJ94]. From
our own experiments, we found that cache conflict misses can
vary widely with slight variations in the problem input size.
Ghosh et al. [GMM99] proposed a precise algorithm, Cache Miss
Equation (CME), to generate a set of equations for cold and
replacement misses. The solutions to these equations represent all
compulsory and conflict misses. However, finding all reuse
vectors and setting up complete cache miss equations is very
complex. Instead, our goal was to develop a more feasible and
practical model that tailors Ghosh's scheme to our specific
problem of predicting the impact of locality optimizations on
cache performance. We simplified Ghosh's model to calculate the
cache misses of Rα. Suppose that TI is the total number of
iterations in the loop nest and FP is the footprint Rα, CRT is the
fraction of Rα’s temporal-reuse that cannot be realized and CRS is
the fraction of Rα’s spatial-reuse that cannot be realized. We
estimate the cache misses of Rα to be:

))1(1())1(()(CRSCRS
cls

CRTCRT
TI
FPTIRCM +−××+−××=α (1)

We compute CRS and CRT in a way similar to the CME approach
by solving a set of equations that sets the cache block address of
Rα equal to that of other references within its reuse distance to
find possible conflicts. With this approach, we take into account
the cache conflicts in an accurate manner. We illustrate how to
compute CRS and CRT for b[j][i] in Figure 2. Suppose that we
have direct-mapped cache (i.e., 1=k). First according to b[j][i]’s
spatial reuse distance N, we set up a set of equations to get CRS
for b[j][i], including:

])][[(])][[(]1,0[tjicAddrijbAddrNt +=−∈∀ (2)

])][1[(])][[(]1,0[tjicAddrijbAddrNt ++=−∈∀ (3)

])][[(])][[(]1,0[itjbAddrijbAddrNt +=−∈∀ (4)

])[(])][[(iaAddrijbAddr = (5)

The solutions to every equation represent all the iterations where
b[j][i] conflicts with another reference. The total number of
iterations that b[j][i] will be evicted by another reference will be
the union of these solution sets. We compute CRS by dividing the
total number of conflict iterations by the total number of
iterations. As b[j][i] has no temporal reuse , CRT equals one.

2.4 Integration of the Models
To integrate the code and optimization models with the cache
model, we extract the loop nests from the original code and
express them using our code model (described in Section 2.1).
Then we input the code model and the optimization input
parameters (shown in optimization models) into an optimization
model and get a new code model that represents the optimized
code. Finally we feed the original code model and the optimized
code model into the cache model. With a cache configuration, the
cache model estimates the cache misses according to the
representation of the code model. We predict the impact of an
optimization by determining the difference between the cache
misses of the original and the optimized code models.

3. EXPERIMENTAL RESULTS
To evaluate the effectiveness of FPO, we implemented our
models and tested them using several common benchmark loops
from the PERFECT suite [BCK88] and other researchers
[HKVI02]. There are two types of benchmarks: those with a
single loop nest (alv, irkernel, lgsi, smsi, srsi, tfsi, and tomcat3)
and those with multiple loop nests (adi, aps, eflux, tomcat, vpenta,
and bmcm). The benchmarks have from one to nine loop nests and
from four to thirty two array references in a loop nest.

To experimentally evaluate our approach, we used the
SimpleScalar microarchitecture simulation framework [BA97].
To validate our models and to compute actual cache misses, we
used the sim-cache tool and to compute actual performance
improvements, we used the sim-outorder tool. The first tool is a
cache level simulator, while the second is a cycle-accurate
pipeline simulator. In our experiments, the simulators were
configured with a 1KB direct-mapped data cache with 32B block
size. Using a small cache with scaled working sets allows us to
investigate the impact of different sized working sets without
suffering the high simulation times required for large data sets.
The performance numbers that we present will scale to other
cache configurations and working set sizes.

In our performance evaluation, we model an in-order single issue
pipeline with a critical-word first non-blocking cache. The
processor has a two entry load-store queue and can sustain up to
two cache misses before stalling. There were three reasons for this
choice. First, in the embedded market, this model is similar to
several popular processors, including MIPS' 4Kp (R4000), ARM's
94x series, and IBM's PowerPC 405. Secondly, although our
cache model assumes a blocking cache and our performance
evaluation is on a non-blocking cache (a more realistic
assumption), we found that the non-blocking cache (with a two
entry load-store queue) has similar performance to the blocking
case for our array-based benchmarks (the average miss penalty is
about the same in both cases). Third, to integrate the cache model
with our optimization models, we used a model that would avoid
other performance effects and confuse the analysis of our results.
This includes hardware-based dynamic scheduling, speculative
execution, and branch prediction. The benefit of these
architectural features is they may mask some effects of cache
misses. However, our cache model is accurate in terms of cache
misses and hits regardless of the processor architecture (assuming
the same memory reference stream). Being able to model the
impact of dynamic scheduling and speculative execution on cache

7

-10%
-8%
-6%
-4%
-2%
0%
2%
4%
6%
8%

10%

alv
(10

0)

alv
(12

8)

irk
ern

el(
10

0)

irk
ern

el(
12

8)

lgs
i(9

8)

lgs
i(1

28
)

sm
si(

12
4)

sm
si(

12
8)

srs
i(1

94
)

srs
i(1

28
)

tfs
i(4

2)

tfs
i(1

28
)

tom
ca

t3(
10

0)

tom
ca

t3(
12

8) ad
i

ap
s

efl
ux

tom
ca

t

vp
en

ta
bm

cm

Interchange Tiling Reversal

0.9

0.95

1

1.05

1.1

alv
 (1

00
)

alv
 (1

28
)

irk
ern

el
(10

0)

irk
ern

el
(12

8)

lgs
i (9

8)

lgs
i (1

28
)

sm
si

(12
4)

sm
si

(12
8)

srs
i (1

94
)

srs
i (1

28
)

tfs
i (4

2)

tfs
i(1

28
)

tom
ca

t3(
10

0)

tom
ca

t3
(12

8) ad
i

ap
s

efl
ux

tom
ca

t

vp
en

ta
bm

cm

interchange tiling reversal

0%

2%

4%

6%

8%

10%

alv
 (1

00
)

alv
 (1

28
)

irk
ern

el
(10

0)

irk
ern

el
(12

8)

lgs
i (9

8)

lgs
i (1

28
)

sm
si

(12
4)

sm
si

(12
8)

srs
i (1

94
)

srs
i (1

28
)

tfs
i (4

2)

tfs
i(1

28
)

tom
ca

t3(
10

0)

tom
ca

t3
(12

8) ad
i

ap
s

efl
ux

tom
ca

t

vp
en

ta
bm

cm

interchange tiling reversal

-111% -27% -120% -11% -91% -108%

12% 38%26% 18% 33% 59% 55%31%

Figure 6A. Performance Impact of Always Applying an Optimization
(Trip counts are in the parentheses after the benchmark name.)

12% 38%26% 18%11% 33%16% 59% 55%31%

Figure 6C. Performance Impact of Selectively Applying an Optimization

Figure 6B. Improvement of Selectively Applying vs. Always Applying

2.11 1.27 2.2 1.11 1.9 2.08 1.2 1.12 1.12

8

performance is a separate issue that is beyond the scope of this
work.

Using our benchmark loops, we investigated the benefit of our
models in improving the application of loop optimizations. A tool
was developed that takes a loop nest and, based on our models,
predicts the impact of a loop optimization on cache performance.
With our tool, we first investigated the impact of a common
heuristic that always applies an optimization when it is safe to
motivate the need for our framework and estimation models. We
then validate our optimization and cache models and demonstrate
their accuracy in predicting the benefit of an optimization. Next,
we show the importance of selectivity in applying an optimization
and how it can improve performance over the "always applying"
heuristic. Finally, we describe two beneficial uses of our models
toward selecting optimization orders and configurations.

3.1 Always Applying an Optimization
A widely used heuristic for optimizations is to always apply an
optimization when it is safe to do so. The assumption is an
optimization will likely improve performance when it is
applicable. However, this assumption can lead to significant
performance penalties as shown in Figure 6A. This figure shows
the percentage change in performance (i.e., cycle count) when
applying an optimization versus not applying the optimization.
Several benchmarks were run with varying trip counts to explore
the effect of different configurations of a loop on whether to apply
an optimization or not. For the benchmarks where the
configuration was varied, only two trip counts are shown. One
trip count comes directly from the benchmark and its input data
set, while the other is at a point that has significant conflict cache
misses (a point that is likely to benefit from loop optimization).
Although the results are not reported here, we varied the trip
count for these benchmarks from 50 to 200 and the first case is
near the average for all trip counts for a benchmark.
The figure demonstrates that across all benchmarks and
optimizations that we considered, applying loop optimizations has
significantly different performance impacts based on both a
specific loop nest and the exact configuration of a loop nest. For
example, loop interchange has a performance impact that varies
from a 120% degradation to a 59% improvement. Also, for a
specific configuration of a loop nest (i.e., different trip counts) the
impact varies. In the case of tiling for the lgsi benchmark, there is
a 3.8% performance improvement for a trip count of 98 and a
0.4% performance degradation for a trip count of 128. Although
the figure does not show loop unrolling, distribution, or fusion,
we used our models to predict their impact. First, as expected,
loop unrolling had no benefit to data cache locality. Of course, it
had other non-cache related benefits such as reducing the total
number of branch tests and improving the scheduling scope.
Second, distribution had a 31% degradation when applied to alv
with a trip count of 100 and a 5.8% degradation when applied to
alv with a trip count of 128. Finally, on tomcat3, fusion had a
very small benefit (0.8%) for a trip count of 100 and a 2.8%
degradation for a trip count of 128.
The trend for the single loop nest benchmarks is also true even for
the complex benchmarks with multiple loop nests. In this case,
loop interchange has a performance range from a 2.5%
degradation to a 59% improvement. Tiling shows a similar trend,

with the aps benchmark having a 26.2% performance
improvement and vpenta having a 1% performance degradation.
As this figure shows, the strategy of always applying an
applicable loop optimization is a dangerous one that may indeed
lead to significant performance degradations. Of course, in some
cases, this strategy works, but it is hard to know when it will work
and when it will not. Instead of blindly applying an optimization,
a more selective approach can be taken with our optimization and
cache models. The models can be used to predict when to apply
an applicable optimization without actually applying it and to
select among several applicable optimizations.

3.2 Impact of Optimization Selectivity
By selectively applying an optimization, the cases where
performance is degraded can be avoided, which can have a
significant effect. Figure 6B shows the performance improvement
of selectively applying an optimization over always applying it.
The performance improvement is relative to always applying the
optimization and demonstrates the effect of selectivity. For the
single nest benchmarks, a performance improvement implies that
an optimization was not applied. For example, the benchmark alv
with a trip count of 100, selectively deciding not to apply loop
interchange has twice the performance of applying it. When
performance is not improved (i.e., in the graph where the bars are
one) both always applying and selectively applying an
optimization had the same effect. For the single nest benchmarks,
these points occur where our model predicts a benefit to applying
an optimization. Hence, the optimization is applied, and since the
nest has a single loop, it has the same performance as always
applying the optimization.
For interchange on the single nest benchmarks, optimization
selectivity has a performance improvement of 0 to 120%. The
large improvements in this case are due to the large degradations
from always applying interchange (see Figure 6A). Although loop
tiling shows a slight improvement due to selectivity, it does not
have as much an improvement as interchange because the
degradation from always applying the optimization is less.
Reversal is similar to the tiling case. Distribution and fushion also
showed improvements when applied with selectivity. With
selectivity, unrolling was not applied since it does not have any
benefit to cache performance. For all single nest benchmarks and
optimizations considered, a selective approach with our models
never results in a performance degradation over always applying
an optimization. Indeed, the model captures the points at which
an optimization is harmful as well as the points at which an
optimization is helpful.
The rightmost bars in the figure show the effect of selectivity on
benchmarks with multiple loop nests. In these cases, interchange
with selectivity has a small performance improvement for adi and
tomcat. A similar trend is true for loop reversal. However, in the
case of loop reversal, two points (eflux and adi) are shown where
our model mispredicts the benefit of applying an optimization and
results in a small performance degradation over always applying
reversal. The situation is different for tiling where selectivity has
a significant difference. For eflux, tomcat, and vpenta, there is a
performance improvement of 1.12-1.2. For tomcat this
improvement occurs even when always applying an optimization
helps actual performance.

9

While Figure 6B shows the advantage of selectively applying an
optimization, it does not show the actual improvement in
execution time due to selectivity. Figure 6C shows how cycle
count is improved. For the single nest benchmarks, performance
is improved by deciding not to apply an optimization when it
would be harmful and by applying an optimization when it would
help. For the points where performance is not improved (i.e., the
speedup is zero), our model correctly decided not to apply the
optimization, and for the points where performance is improved,
our models correctly decide to apply the optimization. In these
cases, the model achieves the same reduction in cycle count as
always applying an optimization since there is only one loop nest.
For example, smsi with an iteration count of 124 has no decrease
in cycle count when interchange is not applied. However, by
selectively deciding not to apply interchange, the 120% penalty of
interchange (see Figure 6A) can be avoided.
In Figure 6C, the cases with multiple loop nests are very
compelling with selectivity resulting in a cycle count
improvement over always applying an optimization for some
benchmarks and optimizations. Consider the tomcat benchmark
and the tiling optimization. Tiling results in a 16% improvement
in cycle count by selectively applying the optimization to some
loop nests and not to others within the same program. In
comparison, always applying tiling achieved only a 5%
improvement in cycle count. Similar cases also occur for tomcat
and interchange, and eflux and vpenta for tiling.

3.3 Model Accuracy
To use FPO to select whether to apply an optimization or not, we
must ensure that the model accurately estimates the effect and
impact of an optimization on cache performance. To validate our
models, we ran the original benchmarks and optimized ones with
our simulation framework. We then compared the predictions of
our models against the simulation results. If an optimization
improves performance with the simulation results, and our model
predicted that the optimization should be applied, then we
consider this to be a correct prediction. If the simulation results
do not match our predicted results, then we consider it to be a
misprediction. We computed a prediction accuracy for our models
that captures how often our model gives the correct answer.

Table 1. Prediction Accuracy for the single loop nest
benchmarks

Benchmark Interchange Tiling Reversal
alv 100% 100% 97.4%

irkernel 98.7% 100% 93.4%
lgsi 100% 100% 82%
smsi 100% 100% 86.8%
srsi 100% 100% 86.8%
fsi 100% 97.4% 100%

tomcat3 98.7% 92.1% 93.4%

Table 1 shows how our model predictions compare to simulation
results for the single nest benchmark loops with varying trip
counts. For each benchmark, the trip count was varied from 50 to
200. From the table, the prediction accuracy ranged from 82% to
100% across all benchmarks and optimizations with an average of
97.2%. Although there is high accuracy across all optimization
models, loop reversal has the lowest accuracy. The reason is that

loop reversal has a minimal impact on data cache locality (i.e., the
cache miss reduction of applying reversal is very small), and as
such, it is difficult to predict its benefit. Although our model
chose not to apply loop reversal at those cases, this choice did not
degrade the effectiveness of our model because the benefit of
applying reversal was too small that it can be ignored (see Figure
6A).

Table 2. Prediction Accuracy for the multiple loop nest
benchmarks.

Interchange Tiling Reversal Benchmark
A M S A M S A M S

adi 2 0 0 2 0 0 2 0 1
aps 1 1 1 1 1 1 3 1 1

eflux 5 5 5 5 1 1 6 2 3
tomcat 6 5 5 6 3 2 9 7 6
vpenta 3 3 3 3 2 2 8 7 7
bmcm 2 2 2 2 2 2 4 3 3

We also investigated the prediction accuracy of our models for
the benchmarks with multiple loop nests. Table 2 shows the
choices made with our models and how the choices compare with
actual performance as reported by the simulation framework. For
each optimization in the table, there are three columns. The first
indicates on how many loop nests in a benchmark an optimization
is applicable. The second column indicates the number of loops
for which our framework predicts a benefit to applying an
optimization. The final column indicates the number of loops in a
benchmark in which an optimization should have been applied
(i.e., it had an actual performance improvement). As an example,
consider loop reversal for vpenta. On this benchmark, there are
eight loops where reversal could be applied and our framework
applied it in seven cases. The simulation results indicate that the
optimization had a benefit on seven loops. In all cases in the table
where there are mispredictions, our model selected the same set of
loop nests for optimization as the simulation results, except for
the one case where there was a misprediction. Although not
shown in the table, our model also always made the correct choice
for loop unrolling, fusion, and distribution.
Table 2 shows that our model is very accurate at selecting
whether to apply an optimization in the multi-nest benchmarks. In
a similar manner to the single nest benchmarks, loop reversal had
the most mispredictions due to a negligible benefit of applying an
optimization. Indeed, all mispredictions in the table, except for
tiling and tomcat, are associated with reversal. The benchmark
tomcat had one misprediction when applying tiling. This one case
corresponds to the tomcat3 benchmark in Table 1. The tomcat3
benchmark is the third loop from tomcat. It has a 92.1%
prediction accuracy for tiling, which is reflected in the
misprediction of applying tiling in the full benchmark.

3.4 Choosing the Best Optimization
Not only can our model be used to decide whether an
optimization should be applied or not, but it can also be used to
select among several applicable optimizations. We can use our
models to get the predicted benefit of applying each optimization
on a loop and then select the one with the maximum benefit.
Choosing the best optimization is particularly interesting in our

A: Applicable; M: Model Predictions; S: Simulation.

10

single nest benchmarks when varying the trip count. Here, the trip
count (the loop configuration) has a big impact on which
optimization is the most beneficial. Figure 7 shows the
distribution of optimizations picked for each single nest
benchmark with the trip count varied from 50 to 200. The figure
shows the percentage of times that a particular optimization was
chosen as the best one to apply. When all optimization models
predicted a performance degradation (or no benefit), our model
decided not to apply any optimization (the "not applying" case in
the figure).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

alv
(100%)

irkernel
(98.7%)

lgsi
(100%)

smsi
(86.8%)

srsi
(86.8%)

tfsi
(96%)

tomcat3
(91%)

Not Applying Distribution Fusion Unrolling Reversal Tiling Interchange

Figure 7 Accuracy and distribution of the most beneficial
optimizations for single loop nest benchmarks

For several of the benchmarks, only a couple of choices were
made. For example, in alv, loop distribution was applied for 11%
of the trip counts. For the other 89% of the trip counts, no
optimization was applied. The benchmarks tfsi and tomcat3 are
interesting since they have three different choices. In tfsi, loop
reversal, interchange, and tiling were applied, with tiling being
applied the most often. For tomcat3, loop interchange was most
often the best optimization, followed by fusion.
The figure also shows the accuracy of the choices made by our
models (in parenthesis below each benchmark name). For most of
the benchmarks, the accuracy was above 96%. For the others,
such as smsi and srsi, the accuracy was lower due to
mispredictions from our loop reversal model. For example, in
smsi, the model predicted no benefit to loop reversal, yet there
was a very small actual benefit. Notice that from Table 1 we see
that reversal had an accuracy of 86%, and as described earlier, the
actual benefit was so small that our model did not capture it. Also,
the performance improvement due to reversal in these cases was
minimal.

3.5 Combining the Optimizations
The framework can also be used to help determine the best way to
combine optimizations that are applicable on a code segment.
Using our optimization and code models, we can determine the
effect of applying one optimization on the code, which would
produce a transformed version of the loop, represented with our
code model. This new version could then be used with a model of
either another optimization or the same optimization that was
initially applied. The result again would be a transformed
representation of the code that has the effects of applying both
optimizations. This process would continue until a final
optimization model is used. The final code representation would

then be used with a cache model to determine the impact of that
optimization order.
for (I = 1; I <= N; I++)
 for (J=1; J<= N; J++)
 for (K = 1; K<= N; K++)
 CM[K][I]+=AM[K][J]*AM[J][K]+BM[I][J]*BM[J][I];
For example, consider the above code (with N equals to 10) that
shows three embedded loops on which loop interchange can be
applied in a number of different ways. The first two loops, I and J,
can be interchanged with a benefit of only 0.2%. Although the 2nd
and 3rd loops, J and K, can be interchanged, there is a
performance penalty of 2.8%. However, by combining both
interchanges, we get a new loop nest, J K I, which improves the
performance by 12.3%. With our framework we can combine
optimizations and get their benefits.
We ran experiments on our benchmarks to determine the impact
of finding an optimal combination of interchanges on loop nests.
With our framework, we found a better interchange combination
for eflux and bmcm than using individual loop interchanges. For
eflux, applying an optimal combination of loop interchange had a
25.3% performance improvement while, the best single loop
interchange had a 18.6% improvement. In the case of bmcm, the
best combination of loop interchange had a 55% improvement
and the best single interchange had a 54% improvement. Thus our
framework can be used to determine a combination of the same
optimization even if there is no benefit for individual
optimizations.

3.6 Optimization Order and Configuration
FPO can also be used to find the best ordering based on the code
context for larger range of code than just one loop (could be the
entire program). To do this requires some type of searching
strategy, such as integer linear programming, machine learning,
AI planning techniques as well as ad hoc techniques. Our
framework of models can be used to produce an objective
function useful to guide the search strategy.
We have used FPO to select a configuration for an optimization
(e.g., tile size or the unroll factor). Just as the framework can be
used to select among applicable optimizations, it can also be used
to select among several configurations for the same optimization.
We used the framework to select between two tile sizes (32 and
64) for tiling. As an example, for the lgsi benchmark, there are
different iteration counts at which a different tile size is preferred.
At an iteration count of 126, a tile size of 32 gives a 7.4%
improvement in cycle count over not tiling the loop. A tile size of
64 gave a 0.5% degradation in performance. However, with a trip
count of 162, the best tile size is 64 (performance improvement of
1.2%). A tile size of 32 resulted in a performance degradation for
this trip count. Our framework accurately predicted the impact of
the different tile sizes for different trip counts for lgsi. We can use
the results from FPO to determine the best optimization
configuration (e.g., tile size) for a given loop configuration (e.g.,
trip count) as this example shows.

4. RELATED WORK
Although predicting the impact of applying an optimization is
important for a static optimizer, it is critical for a dynamic
optimizer because of time demands. One approach that has been

11

used in a dynamic setting to determine whether to apply an
optimization is to perform offline experiments to determine the
benefits and costs of applying an optimization and use this
information during execution [AFGH00]. However, this approach
does not adapt to the actual program execution context where an
optimization is being applied. Previous work has addressed the
phase ordering problem in a number of ways. Whitfield and Soffa
addressed the problem of applying optimizations by analytically
exploring the enabling and disabling properties of optimizations
[WS97]. Cooper et al. proposed a biased-random search to find a
good order of optimizations [CST01]. Others have combined
optimizations to avoid the phase ordering in some cases [CC95].
In optimizing cache behavior, researches have focused on
techniques to improve data locality. For instance, McKinley et al.
[MCT96] proposed a compound algorithm to find desirable loop
organizations according to a simple cache cost model. Some
researchers presented frameworks to combine loop optimizations
and array restructuring [CCCM01 and KCRB99]. There has also
been some research on cache conflict misses. Ghosh et al.
[GMM99] described methods for generating cache miss equations
that give a detailed representation of cache behavior. G. Rivera et
al. [RT98] described some optimizations for eliminating conflict
misses. Another technique is to modify the cache configuration
for each loop according to its access pattern exhibited by the nest
[HKVI02]. Our work differs from the previous work on
optimization by developing analytical models of optimizations
with the focus on their impact on cache performance. Then we
integrate the optimization models and cache model to predict the
benefits of applying an optimization on cache.

5. CONCLUSIONS
In this paper, we described a novel framework, called FPO, for
predicting the impact of optimizations on machine resources and
performance. We demonstrated our framework and its benefit to
tackling several problems that have been known to the compiler
community for years about loop optimizations. We showed that
prediction can be used to selectively apply a loop transformation
when it will have a performance benefit based on cache resources
and loop configuration. We also described and evaluated how the
framework can be used to select the best optimization among
several applicable ones for a particular code context. Finally, we
showed the use of FPO to combine optimizations and select an
optimization configuration (tile size).

6. REFERENCES
[BA97] D.C. Burger and T. M. Austin. The SimpleScalar Tool
Set, Version 2.0. UW Computer Sciences Technical Report 1342,
June, 1997.
[BGS94] D. Bacon, S. Graham, and O. Sharp. Compiler
Transformations for High-Performance Computing. ACM
Computing Surveys, 26(4): 345-420, December 1994.
[CC95] Click, C. and Cooper, K. D. Combining Analyses,
Combining Optimizations. ACM Transactions on Programming
Languages and Systems (TOPLAS) March 1995.
[CCCM01] B. Chandramouli, J. Carter, W. Hsieh, and S. McKee.
A Cost Framework for Evaluating Integrated Restructuring
Optimizations. International Conference on Parallel

Architectures and Compilation Techniques, Barcelona, Spain,
September 2001.
[CST01] K. Cooper, D. Subramanian, and L. Torczon. Adaptive
Optimizing Compilers for the 21st Century. Proceedings of the
2001 LACSI Symposium, Santa Fe, NM, USA, October, 2001.
[GMM99] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss
Equations: A Compiler Framework for Analyzing and Tuning
Behavior. ACM Transactions on Programming Languages and
Systems, 21(4): 703-746, July 1999.
[HKVI02]J. S. Hu, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
H. Saputra, and W. Zhang. Compiler-Directed Cache
Polymorphism. In Proc. of LCTES/SCOPES, June 2002.
[KCRB99] M. Kandemir, J. Ramanujam, and A. Choudhary.
Improving Cache Locality by a Combination of Loop and Data
Transformations. IEEE Transactions on Computers, Vol. 48, No.
2, February 1999.
[MCT96] K. Mckinley, S. Carr, and C. Tseng. Improving Data
Locality with Loop Transformations. ACM Transactions on
Programming Languages and Systems, 18(4): 424-453, July
1996.
[MT96] K. McKinley and O. Temam. A Quantitative Analysis of
Loop Nest Locality. Proc. of the Seventh International
Symposium on Architectural Support for Programming
Languages and Operating Systems, October 1996.
[RT98] G. Rivera and C. Tseng. Data Transformations for
Eliminating Conflict Misses. SIGPLAN Conference on PLDI,
1998.
[SR92] V. Sarkar and R. Thekkath, A General Framework for
Iteration-Reordering Loop Transformations. SIGPLAN Conf. on
Programming Lang. Design and Implementation, 1992.
[TFJ94] O. Temam, C. Fricker and W. Jalby. Cache Interference
Phenomena. In Proc. of SIGMETRICS Conference on
Measurement and Modeling Computer Systems, 1994.
[VKIK00] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Kim
and W. Ye. A unified energy estimation framework with
integrated hardware-software optimizations. In Proc. of the 27th
International Symposium on Computer Architecture, 2000.
[WMSW98] D. Weikle, S. Mckee, K. Skadron, and W. Wulf.
Caches As Filters: A New Approach To Cache Analysis. 6th Intl.
Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS'98), July 1998,
Montreal Canada.
[WS97] D. Whitfield and M. L. Soffa. An Approach for
Exploring Code Improving Transformations. ACM Transactions
on Programming Languages, 19(6):1053-1084, 1997.
[ZCW02] W. Zhao, B. Cai, D. Whalley et al., VISTA: A System
for Interactive Code Improvement, ACM Conf. On Languages,
Compilers, and Tools for Embedded Systems, 2002. The [BCK88]
M. Berry, D. Chen, P. Koss, D. Kuck and et al. PERFECT Club
Benchmarks: Effective Performance Evaluation of
Supercomputers. The International Journal of Supercomputer
Applications

12

Appendix
Optimization Optimization Models

Loop

interchange

INPUT: 〉〈∫∫∫
−

R
N

011

L and interchange is legal for loops i, j;

IMPACT FUNCTION:

∫ ∫∫ ∫∫ ∫∫ ∫
−−

〉〈=〉〈
1 01 0

)()(
N j iN i j

eInterchang RgRf LLLLLL , where

〉〉〈∈〈∀=〉〈)()()(rhRrRg and

)),(()(CAlrh = and

][:][][:][)(jAiAAl ↔=

Loop reversal INPUT: 〉〈∫∫∫
−

R
N

011

L and reversal loop i;

IMPACT FUNCTION:

∫ ∫ ∫∫ ∫ ∫
−

−

−

〉〈=〉〈
1 01 0

)(
N i ub

step
lb

N i

reversal RRf LLLL

Loop tiling INPUT: 〉〈∫∫∫
−

R
N

011

L tiling loops tnt ,,1L , with tile size ntsts ,,1 L respectively;

IMPACT FUNCTION:

∫ ∫∫∫∫ ∫∫∫
−−

〉〈=〉〈
1 011 01

)()(
N ttnN ttn

tiling RfgRf LLLLLL , where

∫∫ ∫ ∫∫∫ ∫∫∫∫
− −−+

=
01 1 1 1

)1()(

101 1

1

1

)(
N N t x

h

tn x

nh

nN N lb
ts
ub

lb
ts
ub

ttn nn

n

n

g LLLLLLL ,

)1,min()(−+= iii tsxubih , and

〉〉〈∈〈∀=〉〈)),(()(CAlRrRf where]0[)(AAl =

13

Optimization Optimization Models

Loop

unrolling

INPUT: 〉〈∫∫∫
−

R
N

011

L and unroll factor U;

IMPACT FUNCTION:

〉〈=〉〈∫ ∫ ∫
−

restunroll

N

unroll lnlnRf ,)(
1 1 0

L

)(
1 1 0

〉〈= ∫ ∫ ∫
−

× Rgln
N

Ustepunroll L 〉〈= ∫ ∫ ∫
− ×



 +

Rln
N U

U
ub

rest

1 1 0 1
L

)),()(^(^)(
1

1
〉〉〈∈〈∀〉〈=〉〈

−

=
irhRrRRg

U

i

)),(,(),(iClAirh =

isCNaAasiCl +≠−∈∀=][})0]1][[|{(),(

Loop fusion INPUT:) (1

011

1 〉〈∫∫∫
−

Rln
N

L ,) (2

011

2 〉〈∫∫∫
−

Rln
N

L , …,) (
011

〉〈∫∫∫
−

m

N

m Rln L

IMPACT FUNCTION:

)(),,(,,2

1 1 0

,121 〉〈〉〈〉〈=〉〈 ∫ ∫ ∫
−

m

N

mfusion RRRflnlnlnf LLL

〉〈=〉〈〉〈〉〈
=

i
m

i
m RRRRf

1
21 ^),,,(L

Loop

distribution

INPUT: 〉〈∫∫∫
−

R
N

011

L and the sets of reference index which will be in lni , },...,{ 1 pii ;

IMPACT FUNCTION:

〉〈=〉〈∫ ∫ ∫
−

m

N

ondistributi lnlnlnRf LL ,,)(21

1 1 0

∫ ∫ ∫
−

〉〈=
1 1 0

)(
N

ii Rfln L , where 〉〈=〉〈 ipiii rrrRf ,...,,)(21

