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ABSTRACT 
When applying optimizations, a number of decisions are made 
using fixed strategies, such as always applying an optimization if 
it is applicable, applying optimizations in a fixed order and 
assuming a fixed configuration for optimizations such as tile size 
and loop unrolling factor.  In this paper, we present a framework 
that enables these decisions to be made based on predicting the 
impact of an optimization, taking into account resources and code 
context. The framework consists of optimization models, code 
models and resource models, which are integrated for predicting 
the impact of applying a set of optimizations. In this paper, we 
focus on cache performance and present an instance of the 
framework for cache. Since most opportunities for cache 
improvement come from loop optimizations, we describe code, 
optimization and cache models tailored to predict the benefit of 
optimizations for data locality. Experimentally we demonstrate 
that always applying an optimization when it is safe can degrade 
performance. We then show the improvement of applying an 
optimization only when our framework indicates it will be 
beneficial.  The accuracy of our framework ranges from 100% to 
82%. We also show that our framework can be used to choose the 
most beneficial optimization when a number of optimizations can 
be applied to a loop nest. And lastly, we show that we can use the 
framework to combine optimizations on a loop nest. The 
framework is general and can be used for other problems such as 
determining the best order of optimizations for a code segment by 
providing an objective function to use with search techniques. 

1. INTRODUCTION 
Although many types of optimizations1 have been applied by 
optimizing compilers for over 40 years, certain performance 
problems of optimizations have yet to be adequately addressed.  It 
is well known in the compiler community that optimizations may 
degrade performance in certain circumstances, but we can not 
determine when this might happen and choose not to apply the 
optimization. Another problem is the combination of 
optimizations, which in some cases, leads to better performance 
than the individual application of an optimization [SR92, CC95].  
However, we do not have a systematic way of determining if and 
which combinations of optimizations are helpful. We also know 
that optimizations enable and disable optimizations so the order of 
application of optimizations can have an impact on performance 
[WS97, ZCW02, CST01]. That is, when there is more than one 
optimization that is applicable, one of them may be more valuable 
to apply than the others.  Ideally, we would like to select the one 
that has the biggest impact. Also, because of the interactions, the 
order of applying optimizations from a suite of optimizations can 
have an impact on performance [ZCW02, WS97]. Typically, the 
compiler designer decides on an optimization order using her 

experience and just applies optimizations in that order. Lastly, the 
configuration of a particular optimization can impact performance 
(e.g., how many times to unroll a loop, tile size, etc.) [MCT96, 
HKVI02]. In all of these cases, although we have techniques for 
handling some of these problems in isolation, there is no general, 
uniform way to effectively address the problems.  
Ideally, we would like to be able to predict the performance 
impact of optimizations before applying them to evaluate their 
efficacy. Such a capability has become all the more important in 
recent years with the tremendous growth in cost-sensitive 
embedded systems, where achieving the very best performance is 
paramount. Prediction is difficult because the impact of a given 
optimization varies markedly and is determined by a number of 
factors, including the target machine architecture (e.g., cache 
configuration and the number of available registers), the 
optimization configuration, and the code context where the 
optimization is applied. What is needed is a uniform way of 
expressing the variations that is useful for predicting the impact of 
optimizations. 

In this paper, we present a Framework for Predicting the impact 
of Optimizations (FPO) for some objective (e.g., performance, 
code size or energy).  The framework consists of three types of 
models: optimization models, code application models and 
resource models.  Although resource models have been developed 
and used successfully [MCT96, GMM99], to our knowledge, this 
work presents the first models of optimizations. The structure of 
our framework, as shown in Figure 1, includes: (1) optimization 
models that represent the characteristics of the optimizations in 
terms of how they will impact an objective, both qualitatively and 
quantitatively, (2) resource models that parameterizes the target 
machine configuration, and (3) application code models that 
abstract information about the application. By integrating the 
models, a “benefit” value is produced that represents the benefit 
of applying an optimization in a code context with the objective 
represented by the resource. 
Based on predictions from our framework, the problems listed 
above can be tackled. Using particular optimization, resource, and 
code models, the framework can be used to predict whether it is 
beneficial or not to apply the optimization in the code context. 
The optimization models (different configurations or different 
optimizations) can be combined and thus we can predict the 
benefit of combining optimizations rather than applying them one 
at a time. When more than one optimization can be applied in a 
code segment, the framework can be used to predict the best one 
to apply. Lastly, the prediction value can be used as an objective 
function when using search techniques such as genetic algorithms 
and AI planning. 
 

1We do not distinguish between code optimizations and transformations.  
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Figure 1: FPO- Prediction Framework 
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In this paper, we focus on using the framework to predict the 
impact on cache performance. Since many factors impact the 
overall performance of a program, including cache performance, 
register allocation and instruction scheduling, it is very difficult to 
analytically predict the impact of optimizations on performance 
[CST01]. Our approach is to isolate each of these factors and 
predict the impact using one factor at a time.  Our work to date 
has focused on predicting the optimization impact on cache 
performance. If the impact on more than one performance factor 
is desired, the models can combined into a single comprehensive 
model.  
As the disparity between processor and main memory speed 
increases by approximately 50 percent per year, the use of caches 
with high hit rates has become critical for performance [GMM99]. 
Data caches are designed to exploit locality, and naturally they 
work best for programs that have high locality. Some 
optimizations are designed to improve cache performance by 
rearranging code to have better locality.  However, other 
optimizations are not designed specifically for this purpose and 
may negatively impact cache performance and the overall 
performance.  We develop optimization and program code models 
that can be used to predict the performance impact of applying an 
optimization on the cache. Since loop behavior dominates cache 
performance [MT96], we focus on loop optimizations: our 
optimization and code models represent the characteristics of the 
loops and optimizations that impact cache performance. We also 
use a model of cache behavior for the array referencing pattern 
that estimates the cache cost of executing code a code segment. 
After determining the impact of an optimization on cache 
performance using the models, the code optimizer can decide 
whether it is beneficial to apply the optimization, or given a set of 
valid optimizations, decide which one should be applied for the 
best cache performance.  

We first describe an instance of FPO for cache performance. We 
experimentally evaluate the framework for determining when to 
apply an optimization, how to combine optimizations and what 
order to apply them. We present experimental results that indicate 
that always applying an optimization can, in fact, degrade 
performance. Using our framework, we experimentally show the 

accuracy of FPO for predicting cache performance. We also 
describe the performance improvement of selectively applying an 
optimization only when a prediction indicates an improvement. 
We demonstrate the usefulness of FPO for predicting the impact 
of combining optimizations and for choosing the most beneficial 
optimization, given a number of optimizations that can be applied. 
In our experiments, we considered loop interchange, loop 
unrolling, loop tiling, loop fusion, loop distribution and loop 
reversal [BGS94]. Our experimental results indicate that our 
technique is useful for predicting the impact of optimizations on 
cache and for selecting the most beneficial optimization. 
Interestingly, our results also demonstrate that different 
optimizations should be applied at the same program point based 
on the context, such as loop trip count.  

The contributions of this paper include: 
• A unique framework that integrates optimization, 

resource and application models to predict the impact of 
optimizations without applying them, 

• An instance of that framework for predicting the impact 
of loop optimizations on cache, 

• The first analytical optimization models that capture the 
characteristics of the optimizations as to how they 
impact cache performance, 

• A code model that captures the aspects of a loop that are 
impacted by loop optimizations, 

• Experimental results showing that always applying 
optimizations does degrade cache performance and that 
better performance can be achieved by using our 
framework to selectively apply optimizations when 
there is a predicted benefit, and 

• Demonstration of the usefulness of the framework in 
combining optimizations and selecting the best 
optimization to apply. 

In the next section, we provide an overview of FPO and describe 
our technique to predict the impact of optimizations on cache 
performance, including our code model, optimization models and 
cache model. Experimental results are reported in Section 3. 
Related work is briefly given in Section 4, followed by 
conclusions in Section 5. 

2. FPO FOR CACHE PERFORMANCE 
To predict the impact of optimizations on cache locality, we first 
extract information about a loop nest and represent it with a code 
model. We consider the loop nests because they dominate cache 
performance for a given code [MT96]. We assume the array is 
arranged in row-order without loss of generality. Next, we use 
optimization models to express the characteristics that affect 
cache performance for an individual optimization. We then use a 
cache model to estimate the cache cost in terms of cache misses 
of executing a code. If it is safe to apply an optimization in a code 
segment, we first predict the benefit of applying the optimization 
in a particular code context. The prediction is done by integrating 
the optimization models and the cache model. In the next 
sections, we present our models for optimization and cache. We 
begin our discussion with our code model.  

2.1 Code Model 
In order to predict the impact of optimizations on cache 
performance, we need to express those code characteristics that 
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        for ( i=0; i<N; i++)              
              for ( j=0; j<N; j++)              

     a[i] = a[i] + b[j][i]*c[i][j]+c[i+1][j];              

(a) Original loop nest 
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(b) Code model for the loop nest  
 

Figure 2. A loop nest and its code model 

affect the cache, which are a loop’s header and the sequence of 
array references in a loop body. 

DEF 1 A loop header, ∫
lb

step
ub

, consists of a lower bound (lb), upper 

bound (ub), and iteration step (step). 

DEF 2 A reference is a static read or write in the program, while 
a particular execution of that read or write at run time is a 
memory access [GMM99].  

DEF 3 An array reference is a reference that refers to an array 
element and includes the name of the array and its access function 
(subscript). Because optimizations usually change the access 
functions (and not the name of the array), we use an 

equation, CIARef +×= , to represent the access function of an 

array reference. Here, A is the access matrix, I  is the loop index 

vector and C  is the constant vector [HKVI02]. This equation can 
be written as: 
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In our model, we use the access matrix (A) and constant vector 

(C) to represent an array reference. The loop index variables, I , 
are represented by the loop header. 

DEF 4 An array reference sequence, 〉〈R , consists of all array 
references in a loop body in the order that they appear textually in 
the code. 

DEF 5 A loop, 〉〈∫ R
lb

step
ub

 , consists of its header and array 

reference sequence. 

DEF 6 A perfect loop nest, 〉〈∫∫∫
−

R
lb

step
ub

lb
step
ub

N lb
step
ub
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L , is a 

sequence of loops enclosing the same array reference sequence. 
Although all of the loop nests that we consider in this paper are 
perfect loop nests, our technique can be extended to handle other 

nested loops by including the loop index I in every array 
reference. 

DEF 7 A loop nest sequence, 〉〈=〉〈 K,ln,lnLN 21  , is a sequence 
of loop nests in the order they appear in the code. A loop nest 
sequence that has one loop nest is the loop nest itself. 

Figure 2 shows an example of a loop nest and its code model, 
where (Aa, Ca) represent the array reference a[i] (same with the 
array references b and c.)  

2.2 Optimization Models 
As was said, our optimization models capture the characteristics 
that affect cache, which include loop headers and array 
references.  

Loop headers give the total number of memory accesses for an 
array reference. The loop organization and array referring pattern 
determine how the memory accesses are ordered. Different orders 
result in different data reuse and thus different amounts of cache 
misses. Because an optimization affects the loop organization and 
array references structure, we use a function to describe the 
impact of an optimization.  

DEF 8 Impact function of an optimization, 〉〈=〉〈 ')( LNLNfopt , 
is a function that maps an original loop nest sequence to a new 
loop nest sequence.  

We develop an impact function for every loop optimization 
considered in this paper. In the following sections, we present our 
optimization models, including the impact functions, for loop 
interchange, unrolling, tiling, reversal, fusion, and distribution.  

2.2.1 Loop Interchange  
Loop interchange exchanges the position of two loops in a loop 
nest. The optimization model for loop interchange is illustrated in 
Figure 3. The impact function, finterchange, maps an original loop 
nest to a new loop nest, according to the semantics of loop 
interchange. Essentially this function exchanges lb, ub and step of 
loop i with that of loop j. It also changes the array reference 
sequence 〉〈R by a function 〉〈Rg . This function determines the 
new array reference sequence for the transformed loop by 
applying h(r) on every reference r in 〉〈R . Function h(r) 
computes a new array reference by exchanging column i and j in 
the access matrix A from r's reference equation. l(A) handles the 
column interchange. The constant vector (C) for r is unchanged.  
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L  and interchange is legal for loops i, j; 
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Figure 3: Loop Interchange Model 

Consider the example in Figure 2. Using the model in Figure 3, 

we determine the new loop nest. The new header ∫ ∫
−−
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 by exchanging lb, ub, and step for loop li 

and lj. The new array reference 
sequence, 〉〈=〉〈 ',...,',','' 4210 rrrrR , is determined by changing 
the access matrix of every array reference in 〉〈R . For example, 
the access matrix of a[i] is changed from [ ]01  to [ ]10  and 

b[j][i] is changed from 







0
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 to 







10
01

 . 

The optimization model for loop interchange determines how 
reference patterns are changed. These changes potentially affect 
data reuse (and hence cache misses) in two ways. First a loop’s 
spatial and group temporal reuse may change. In our example, 
b[j][i] in iteration (i0+1,j0) could reuse the cache line accessed by 
itself in iteration (i0,j0) in the original loop nest. The reuse 
distance is the number of iterations between a reuse and the 
previous access. b[j][i]’s reuse distance is 

N,ji, ,jidiff =+ ))1()(( 0000 . In the interchanged loop nest, b[j][i] 
in iteration (j0,i0+1) could reuse the cache line accessed by itself 
in iteration (j0,i0). The reuse distance changed to 

1))()(( 10000 =+,ij, ,ijdiff . Second, group temporal reuse may 
also change. In our example, the reuse distance for c[i][j] is N . In 
the interchanged loop nest, it changes to 1. Decreasing the reuse 
distance can greatly reduce the possibility that an intervening 
memory access evicts a cache line that could be reused. Hence, 
cache misses may be reduced by interchanging the two loops. 

2.2.2 Loop Unrolling 
Loop unrolling duplicates a loop’s body a number of times 
[BGS94]. It is commonly understood that loop unrolling has little 
impact on cache performance. Our approach demonstrated that 
loop unrolling has no impact on cache performance when the trip 
count is a multiple of unroll factor. The optimization model for 
loop unrolling is shown in Figure 4.  

The impact function funrollling maps an original loop nest to two 
nested loops (one for the unrolled loop and one for the possible 
leftover iterations) according to the semantics of loop unrolling. 

In the unrolled loop nest, the step of the innermost loop is 
changed to Ustep ×  (U is the unroll factor) and the array 
reference sequence, 〉〈R , is changed by a function g, which 
combines 〉〈〉〈〉〈〉〈 − 121 ,,,, URRRR L  together. A reference 〉〈 iR  
is determined by applying the function ),( irh on every array 
reference, r, in 〉〈R . Function ),( irh  models how the access 
matrix and constant vector of a reference are changed. It keeps the 
access matrix unchanged and applies l(C,i) on the constant vector. 
Essentially, l(C,i) changes C by adding i to those dimensions that 
have the innermost loop control variable. In the loop nest for the 
leftover iterations, the lb of the innermost loop is changed to 

U
U

ub
×



 +1  and the array reference sequence, 〉〈R , is 

unchanged. 

 

Use the example from Figure 2 to illustrate our model, supposing 
that the unroll factor is two. With the model from Figure 4, the 

unrolled loop's header becomes, ∫∫
−−

0 0
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1 NN
, from the rolled 

loop's header, ∫∫
−−

0 0
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1

1 0
1

1 NN
, by doubling the step of the innermost 

loop. The array reference sequence for the unrolled loop 
is 〉〈 9,,5,,10, rrrr LL , where r5 to r9 is determined by keeping the 
access matrix and changing the constant vector of r0 to r4 in 〉〈R .  

For example, r6 (b[j+1][i]) has the same access matrix 







0
1

1
0

  as 

1r  (b[j][i]) , but a different constant vector 







0
1

. Second, we 

determine the loop nest for the leftover iterations. Its loop header 

INPUT: 〉〈∫∫∫
−

R
N
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L and unroll factor U; 
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−
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N
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)( 
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Figure 4: Loop Unrolling Model 
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2
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N

NN
 and its array reference sequence is the same 

as 〉〈R . 

2.2.3 Loop Tiling 
Loop tiling improves cache reuse by dividing an iteration space 
into tiles and transforming the loop nest to iterate over them 
[BGS94]. The optimization model for loop tiling is shown in 
Figure 5. 

The impact function, ftiling, maps an original loop nest to a new 
loop nest by changing its loop header by function g and changing 
its array reference sequence 〉〈R by function f. Essentially, 

function g adds ∫∫
−+ NnN n

n

n

lb
ts
ub

lb
ts
ub

1

1

1

1

L to the outermost and changes lb 

and ub of loops to be tiled. (The input to the model specifies the 
number of loops to be tiled, n, their index in the header sequence 

tntt ,,2,1 L and their tile size, ntststs ,,, 21 L .) The lb of lti changes 
to the control variable of lN+ti-1 (represented as xi). The ub of lti 
changes to a function h(i),  which gets the minimum number of 
original ub and ( 1−+ ii tsx ). On the other hand, function 

)( 〉〈Rf changes the access matrix (A) by function l(A) of every 
array reference in 〉〈R , where function l(A) adds n columns of 
zero to A’s first n columns. The constant vector (C) does not 
change. 

 
For the example in Figure 2, if we tile li and lj with tile size 64 and 
64, using the model shown in Figure 5, we get the new loop header 

as ∫∫∫∫
+−+−−−

0 1
1

)631,1min(

1 2
1

)632,1min(

2 0
64

1

3 0
64

1

x

xN

x

xNNN
. The access matrix of 

every array reference is changed, e.g., b[j][i] is changed from 









0
1

1
0

 to 







0100
1000

 . 

2.2.4 Loop Reversal 
Loop reversal changes the direction in which a loop traverses its 
iteration range [BGS94]. The impact function for loop reversal, 

freversal, changes the loop header only. It does not change the array 
references sequence. The impact function simply exchanges lb 
with ub of the loop to be reversed and changes the sign of its step. 
Thus loop reversal has little impact on cache performance. The 
optimization model for loop reversal is shown in the Appendix.  

2.2.5 Loop Fusion 
Loop fusion combines a number of loops into one loop. The 
impact function, ffusion, maps several loop nests with the same 
header to a fused loop nest. The optimization (i.e., impact 
function) does not change the loop header, but does change the 
array references. It combines the array reference sequences of the 
loop nests in the original sequence in the order that the nests 
appear in the source code. The optimization model of loop fusion 
is shown in the Appendix.  

Increasing the number of array references in the loop nest impacts 
on cache misses as follows. First it improves the group-reuse. The 
inter-loop reuses, which are seldom realized when the working set 
size is very large, change to intra-loop group reuses. These reuses 
may be more likely to result in a cache hit. Second, loop fusion 
can increase the possibility of cache interference, which may 
cause more cache misses. 

2.2.6 Loop Distribution 
Loop distribution divides a loop into many loops.  Like loop 
fusion, the impact function, fdistribution, does not change the loop 
header but does change the array reference. The impact function 
of loop fusion divides the array reference sequence in the original 
loop nests into several sequences. How to divide the array 
reference sequence is provided as an input, i.e., how to distribute 
the loop nest should be known as the optimization’s parameters. 
The optimization model of loop distribution is shown in the 
Appendix. 

2.3 Cache Model 
We use a cache model to estimate the cache cost of executing a 
loop nest. This model indicates how a given reference pattern 
affects cache misses (and hits) under the assumption of a single 
issue in-order pipelined processor with a blocking cache (see 
Section 3). To improve locality, we want to reduce the number of 
cache misses, and in evaluating the impact of an optimization, we 
want to know whether the number of cache misses is decreased by 
the optimization. 

Because some array references may access the same cache line in 
the same or different iteration (due to group temporal or spatial 
reuse), we group references to avoid over estimating the number 
of cache misses when a reference may access a cache element that 
has been previously loaded. We adapt Mckinley et al.’s RefGroup 
algorithm [MCT96] to formulate RefSet using our code model 
representation to calculate group and temporal reuse.  We 
consider two references 1r (A1, C1) and 2r  (A2, C2) that refer to 
the same array to belong to the same RefSet if: 
(1) 21 AA = , ki∀ (ik is the row index of the none-zero elements 

in the last column of A1) 
2 and ][][ 121 ≤×= − dstepdi-CiC Nkk ( 1−Nstep  is the 

iteration step of the innermost loop) , and all other ip 

( kp ii ≠ ),   ][][ 21 pp iCiC = or 

INPUT: 〉〈∫∫∫
−

R
N

 
011

L , tiling loops tnt ,,1L , with tile 

size ntsts ,,1 L respectively; 

∫ ∫∫∫∫ ∫∫∫
−−

〉〈=〉〈

1 011 01

  )()(
N ttnN ttn

tiling RfgRf LLLLLL  where 

∫∫ ∫ ∫∫∫ ∫∫∫∫
− −−+

=

01 1 1 1

)1()(

101 1

1

1

)(
N N t x

h

tn x

nh

nN N lb
ts
ub

lb
ts
ub

ttn nn

n

n

g LLLLLLL  

)1,min()( −+= iii tsxubih  and 

〉〉〈∈〈∀=〉〈 )),((  )( CAlRrRf  where  ]0[)( AAl =  

Figure 5: Loop Tiling Model 
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(2) 21  A A = , )10 ( ][][ 21 d-iiCiC <≤= , and 
clsdCdC <−−−  ]1[]1[ 21 . 

Condition 1 accounts for group temporal reuse, and condition 2 
accounts for group spatial reuse.  

Once we account for group reuse, we can calculate the cache 
misses of a representative array reference, say Rα, in a RefSet. 
Initially, we use McKinley et al.’s cache cost model. While their 
model accurately estimated cache misses under some 
circumstances, it did not have sufficient overall accuracy needed 
to achieve good results for all of our optimization models. The 
reason is that it handles cache conflict misses in a simple manner 
and did not accurately reflect all possible sources of conflict 
misses.  

Cache conflicts are difficult to predict and estimate [TFJ94]. From 
our own experiments, we found that cache conflict misses can 
vary widely with slight variations in the problem input size. 
Ghosh et al. [GMM99] proposed a precise algorithm, Cache Miss 
Equation (CME), to generate a set of equations for cold and 
replacement misses. The solutions to these equations represent all 
compulsory and conflict misses. However, finding all reuse 
vectors and setting up complete cache miss equations is very 
complex. Instead, our goal was to develop a more feasible and 
practical model that tailors Ghosh's scheme to our specific 
problem of predicting the impact of locality optimizations on 
cache performance. We simplified Ghosh's model to calculate the 
cache misses of Rα. Suppose that TI is the total number of 
iterations in the loop nest and FP is the footprint Rα, CRT is the 
fraction of Rα’s temporal-reuse that cannot be realized and CRS is 
the fraction of Rα’s spatial-reuse that cannot be realized. We 
estimate the cache misses of Rα to be: 

))1(1())1(()( CRSCRS
cls

CRTCRT
TI
FPTIRCM +−××+−××=α     (1) 

We compute CRS and CRT in a way similar to the CME approach 
by solving a set of equations that sets the cache block address of 
Rα equal to that of other references within its reuse distance to 
find possible conflicts.  With this approach, we take into account 
the cache conflicts in an accurate manner. We illustrate how to 
compute CRS and CRT for b[j][i] in Figure 2. Suppose that we 
have direct-mapped cache (i.e., 1=k ). First according to b[j][i]’s 
spatial reuse distance N,  we set up a set of equations to get CRS 
for b[j][i], including: 

])][[(])][[(  ]1,0[ tjicAddrijbAddrNt +=−∈∀   (2) 

])][1[(])][[( ]1,0[ tjicAddrijbAddrNt ++=−∈∀  (3) 

])][[(])][[( ]1,0[ itjbAddrijbAddrNt +=−∈∀   (4) 

])[(])][[( iaAddrijbAddr =     (5) 

The solutions to every equation represent all the iterations where 
b[j][i] conflicts with another reference. The total number of 
iterations that b[j][i] will be evicted by another reference will be 
the union of these solution sets. We compute CRS by dividing the 
total number of conflict iterations by the total number of 
iterations. As b[j][i] has no temporal reuse , CRT equals one. 

2.4 Integration of the Models 
To integrate the code and optimization models with the cache 
model, we extract the loop nests from the original code and 
express them using our code model (described in Section 2.1). 
Then we input the code model and the optimization input 
parameters (shown in optimization models) into an optimization 
model and get a new code model that represents the optimized 
code. Finally we feed the original code model and the optimized 
code model into the cache model. With a cache configuration, the 
cache model estimates the cache misses according to the 
representation of the code model. We predict the impact of an 
optimization by determining the difference between the cache 
misses of the original and the optimized code models. 

3. EXPERIMENTAL RESULTS  
To evaluate the effectiveness of FPO, we implemented our 
models and tested them using several common benchmark loops 
from the PERFECT suite [BCK88] and other researchers 
[HKVI02]. There are two types of benchmarks: those with a 
single loop nest (alv, irkernel, lgsi, smsi, srsi, tfsi, and tomcat3) 
and those with multiple loop nests (adi, aps, eflux, tomcat, vpenta, 
and bmcm). The benchmarks have from one to nine loop nests and 
from four to thirty two array references in a loop nest. 

To experimentally evaluate our approach, we used the 
SimpleScalar microarchitecture simulation framework [BA97]. 
To validate our models and to compute actual cache misses, we 
used the sim-cache tool and to compute actual performance 
improvements, we used the sim-outorder tool. The first tool is a 
cache level simulator, while the second is a cycle-accurate 
pipeline simulator. In our experiments, the simulators were 
configured with a 1KB direct-mapped data cache with 32B block 
size. Using a small cache with scaled working sets allows us to 
investigate the impact of different sized working sets without 
suffering the high simulation times required for large data sets. 
The performance numbers that we present will scale to other 
cache configurations and working set sizes. 

In our performance evaluation, we model an in-order single issue 
pipeline with a critical-word first non-blocking cache. The 
processor has a two entry load-store queue and can sustain up to 
two cache misses before stalling. There were three reasons for this 
choice. First, in the embedded market, this model is similar to 
several popular processors, including MIPS' 4Kp (R4000), ARM's 
94x series, and IBM's PowerPC 405. Secondly, although our 
cache model assumes a blocking cache and our performance 
evaluation is on a non-blocking cache (a more realistic 
assumption), we found that the non-blocking cache (with a two 
entry load-store queue) has similar performance to the blocking 
case for our array-based benchmarks (the average miss penalty is 
about the same in both cases). Third, to integrate the cache model 
with our optimization models, we used a model that would avoid 
other performance effects and confuse the analysis of our results. 
This includes hardware-based dynamic scheduling, speculative 
execution, and branch prediction. The benefit of these 
architectural features is they may mask some effects of cache 
misses. However, our cache model is accurate in terms of cache 
misses and hits regardless of the processor architecture (assuming 
the same memory reference stream). Being able to model the 
impact of dynamic scheduling and speculative execution on cache  
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-111% -27% -120% -11% -91% -108% 

12% 38%26% 18% 33% 59% 55%31% 

Figure 6A. Performance Impact of Always Applying an Optimization 
(Trip counts are in the parentheses after the benchmark name.) 

12% 38%26% 18%11% 33%16% 59% 55%31% 

Figure 6C. Performance Impact of Selectively Applying an Optimization 

Figure 6B. Improvement of Selectively Applying vs. Always Applying 

2.11 1.27 2.2 1.11 1.9 2.08 1.2 1.12 1.12 
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performance is a separate issue that is beyond the scope of this 
work.  

Using our benchmark loops, we investigated the benefit of our 
models in improving the application of loop optimizations. A tool 
was developed that takes a loop nest and, based on our models, 
predicts the impact of a loop optimization on cache performance. 
With our tool, we first investigated the impact of a common 
heuristic that always applies an optimization when it is safe to 
motivate the need for our framework and estimation models. We 
then validate our optimization and cache models and demonstrate 
their accuracy in predicting the benefit of an optimization. Next, 
we show the importance of selectivity in applying an optimization 
and how it can improve performance over the "always applying" 
heuristic. Finally, we describe two beneficial uses of our models 
toward selecting optimization orders and configurations.  

3.1 Always Applying an Optimization 
A widely used heuristic for optimizations is to always apply an 
optimization when it is safe to do so. The assumption is an 
optimization will likely improve performance when it is 
applicable. However, this assumption can lead to significant 
performance penalties as shown in Figure 6A.  This figure shows 
the percentage change in performance (i.e., cycle count) when 
applying an optimization versus not applying the optimization. 
Several benchmarks were run with varying trip counts to explore 
the effect of different configurations of a loop on whether to apply 
an optimization or not. For the benchmarks where the 
configuration was varied, only two trip counts are shown.  One 
trip count comes directly from the benchmark and its input data 
set, while the other is at a point that has significant conflict cache 
misses (a point that is likely to benefit from loop optimization). 
Although the results are not reported here, we varied the trip 
count for these benchmarks from 50 to 200 and the first case is 
near the average for all trip counts for a benchmark.  
The figure demonstrates that across all benchmarks and 
optimizations that we considered, applying loop optimizations has 
significantly different performance impacts based on both a 
specific loop nest and the exact configuration of a loop nest. For 
example, loop interchange has a performance impact that varies 
from a 120% degradation to a 59% improvement. Also, for a 
specific configuration of a loop nest (i.e., different trip counts) the 
impact varies. In the case of tiling for the lgsi benchmark, there is 
a 3.8% performance improvement for a trip count of 98 and a 
0.4% performance degradation for a trip count of 128.  Although 
the figure does not show loop unrolling, distribution, or fusion, 
we used our models to predict their impact. First, as expected, 
loop unrolling had no benefit to data cache locality. Of course, it 
had other non-cache related benefits such as reducing the total 
number of branch tests and improving the scheduling scope.  
Second, distribution had a 31% degradation when applied to alv 
with a trip count of 100 and a 5.8% degradation when applied to 
alv with a trip count of 128. Finally, on tomcat3, fusion had a 
very small benefit (0.8%) for a trip count of 100 and a 2.8% 
degradation for a trip count of 128. 
The trend for the single loop nest benchmarks is also true even for 
the complex benchmarks with multiple loop nests. In this case, 
loop interchange has a performance range from a 2.5% 
degradation to a 59% improvement. Tiling shows a similar trend, 

with the aps benchmark having a 26.2% performance 
improvement and vpenta having a 1% performance degradation.  
As this figure shows, the strategy of always applying an 
applicable loop optimization is a dangerous one that may indeed 
lead to significant performance degradations.  Of course, in some 
cases, this strategy works, but it is hard to know when it will work 
and when it will not.  Instead of blindly applying an optimization, 
a more selective approach can be taken with our optimization and 
cache models. The models can be used to predict when to apply 
an applicable optimization without actually applying it and to 
select among several applicable optimizations. 

3.2 Impact of Optimization Selectivity 
By selectively applying an optimization, the cases where 
performance is degraded can be avoided, which can have a 
significant effect. Figure 6B shows the performance improvement 
of selectively applying an optimization over always applying it.  
The performance improvement is relative to always applying the 
optimization and demonstrates the effect of selectivity. For the 
single nest benchmarks, a performance improvement implies that 
an optimization was not applied. For example, the benchmark alv 
with a trip count of 100, selectively deciding not to apply loop 
interchange has twice the performance of applying it. When 
performance is not improved (i.e., in the graph where the bars are 
one) both always applying and selectively applying an 
optimization had the same effect. For the single nest benchmarks, 
these points occur where our model predicts a benefit to applying 
an optimization.  Hence, the optimization is applied, and since the 
nest has a single loop, it has the same performance as always 
applying the optimization.  
For interchange on the single nest benchmarks, optimization 
selectivity has a performance improvement of 0 to 120%. The 
large improvements in this case are due to the large degradations 
from always applying interchange (see Figure 6A). Although loop 
tiling shows a slight improvement due to selectivity, it does not 
have as much an improvement as interchange because the 
degradation from always applying the optimization is less.  
Reversal is similar to the tiling case. Distribution and fushion also 
showed improvements when applied with selectivity. With 
selectivity, unrolling was not applied since it does not have any 
benefit to cache performance. For all single nest benchmarks and 
optimizations considered, a selective approach with our models 
never results in a performance degradation over always applying 
an optimization.  Indeed, the model captures the points at which 
an optimization is harmful as well as the points at which an 
optimization is helpful. 
The rightmost bars in the figure show the effect of selectivity on 
benchmarks with multiple loop nests. In these cases, interchange 
with selectivity has a small performance improvement for adi and 
tomcat. A similar trend is true for loop reversal.  However, in the 
case of loop reversal, two points (eflux and adi) are shown where 
our model mispredicts the benefit of applying an optimization and 
results in a small performance degradation over always applying 
reversal.  The situation is different for tiling where selectivity has 
a significant difference. For eflux, tomcat, and vpenta, there is a 
performance improvement of 1.12-1.2. For tomcat this 
improvement occurs even when always applying an optimization 
helps actual performance. 
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While Figure 6B shows the advantage of selectively applying an 
optimization, it does not show the actual improvement in 
execution time due to selectivity. Figure 6C shows how cycle 
count is improved.  For the single nest benchmarks, performance 
is improved by deciding not to apply an optimization when it 
would be harmful and by applying an optimization when it would 
help.  For the points where performance is not improved (i.e., the 
speedup is zero), our model correctly decided not to apply the 
optimization, and for the points where performance is improved, 
our models correctly decide to apply the optimization. In these 
cases, the model achieves the same reduction in cycle count as 
always applying an optimization since there is only one loop nest.  
For example, smsi with an iteration count of 124 has no decrease 
in cycle count when interchange is not applied. However, by 
selectively deciding not to apply interchange, the 120% penalty of 
interchange (see Figure 6A) can be avoided. 
In Figure 6C, the cases with multiple loop nests are very 
compelling with selectivity resulting in a cycle count 
improvement over always applying an optimization for some 
benchmarks and optimizations. Consider the tomcat benchmark 
and the tiling optimization. Tiling results in a 16% improvement 
in cycle count by selectively applying the optimization to some 
loop nests and not to others within the same program. In 
comparison, always applying tiling achieved only a 5% 
improvement in cycle count. Similar cases also occur for tomcat 
and interchange, and eflux and vpenta for tiling.  

3.3 Model Accuracy 
To use FPO to select whether to apply an optimization or not, we 
must ensure that the model accurately estimates the effect and 
impact of an optimization on cache performance. To validate our 
models, we ran the original benchmarks and optimized ones with 
our simulation framework. We then compared the predictions of 
our models against the simulation results. If an optimization 
improves performance with the simulation results, and our model 
predicted that the optimization should be applied, then we 
consider this to be a correct prediction. If the simulation results 
do not match our predicted results, then we consider it to be a 
misprediction. We computed a prediction accuracy for our models 
that captures how often our model gives the correct answer. 

Table 1. Prediction Accuracy for the single loop nest 
benchmarks 

Benchmark Interchange Tiling Reversal 
alv 100% 100% 97.4%

irkernel 98.7% 100% 93.4% 
lgsi 100% 100% 82% 
smsi 100% 100% 86.8% 
srsi 100% 100% 86.8% 
fsi 100% 97.4% 100% 

tomcat3 98.7% 92.1% 93.4% 
 
Table 1 shows how our model predictions compare to simulation 
results for the single nest benchmark loops with varying trip 
counts. For each benchmark, the trip count was varied from 50 to 
200. From the table, the prediction accuracy ranged from 82% to 
100% across all benchmarks and optimizations with an average of 
97.2%. Although there is high accuracy across all optimization 
models, loop reversal has the lowest accuracy. The reason is that 

loop reversal has a minimal impact on data cache locality (i.e., the 
cache miss reduction of applying reversal is very small), and as 
such, it is difficult to predict its benefit.  Although our model 
chose not to apply loop reversal at those cases, this choice did not 
degrade the effectiveness of our model because the benefit of 
applying reversal was too small that it can be ignored (see Figure 
6A). 

Table 2. Prediction Accuracy for the multiple loop nest 
benchmarks. 

Interchange Tiling Reversal Benchmark 
A M S A M S A M S

adi 2 0 0 2 0 0 2 0 1
aps 1 1 1 1 1 1 3 1 1 

eflux 5 5 5 5 1 1 6 2 3 
tomcat 6 5 5 6 3 2 9 7 6 
vpenta 3 3 3 3 2 2 8 7 7 
bmcm 2 2 2 2 2 2 4 3 3 

 
 
We also investigated the prediction accuracy of our models for 
the benchmarks with multiple loop nests.  Table 2 shows the 
choices made with our models and how the choices compare with 
actual performance as reported by the simulation framework. For 
each optimization in the table, there are three columns. The first 
indicates on how many loop nests in a benchmark an optimization 
is applicable. The second column indicates the number of loops 
for which our framework predicts a benefit to applying an 
optimization. The final column indicates the number of loops in a 
benchmark in which an optimization should have been applied 
(i.e., it had an actual performance improvement). As an example, 
consider loop reversal for vpenta. On this benchmark, there are 
eight loops where reversal could be applied and our framework 
applied it in seven cases. The simulation results indicate that the 
optimization had a benefit on seven loops. In all cases in the table 
where there are mispredictions, our model selected the same set of 
loop nests for optimization as the simulation results, except for 
the one case where there was a misprediction. Although not 
shown in the table, our model also always made the correct choice 
for loop unrolling, fusion, and distribution. 
Table 2 shows that our model is very accurate at selecting 
whether to apply an optimization in the multi-nest benchmarks. In 
a similar manner to the single nest benchmarks, loop reversal had 
the most mispredictions due to a negligible benefit of applying an 
optimization. Indeed, all mispredictions in the table, except for 
tiling and tomcat, are associated with reversal. The benchmark 
tomcat had one misprediction when applying tiling. This one case 
corresponds to the tomcat3 benchmark in Table 1. The tomcat3 
benchmark is the third loop from tomcat. It has a 92.1% 
prediction accuracy for tiling, which is reflected in the 
misprediction of applying tiling in the full benchmark. 

3.4 Choosing the Best Optimization 
Not only can our model be used to decide whether an 
optimization should be applied or not, but it can also be used to 
select among several applicable optimizations. We can use our 
models to get the predicted benefit of applying each optimization 
on a loop and then select the one with the maximum benefit. 
Choosing the best optimization is particularly interesting in our 

A: Applicable; M: Model Predictions; S: Simulation. 
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single nest benchmarks when varying the trip count. Here, the trip 
count (the loop configuration) has a big impact on which 
optimization is the most beneficial. Figure 7 shows the 
distribution of optimizations picked for each single nest 
benchmark with the trip count varied from 50 to 200. The figure 
shows the percentage of times that a particular optimization was 
chosen as the best one to apply. When all optimization models 
predicted a performance degradation (or no benefit), our model 
decided not to apply any optimization (the "not applying" case in 
the figure). 
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Figure 7 Accuracy and distribution of the most beneficial 
optimizations for single loop nest benchmarks 

For several of the benchmarks, only a couple of choices were 
made. For example, in alv, loop distribution was applied for 11% 
of the trip counts. For the other 89% of the trip counts, no 
optimization was applied. The benchmarks tfsi and tomcat3 are 
interesting since they have three different choices. In tfsi, loop 
reversal, interchange, and tiling were applied, with tiling being 
applied the most often. For tomcat3, loop interchange was most 
often the best optimization, followed by fusion.  
The figure also shows the accuracy of the choices made by our 
models (in parenthesis below each benchmark name). For most of 
the benchmarks, the accuracy was above 96%. For the others, 
such as smsi and srsi, the accuracy was lower due to 
mispredictions from our loop reversal model. For example, in 
smsi, the model predicted no benefit to loop reversal, yet there 
was a very small actual benefit. Notice that from Table 1 we see 
that reversal had an accuracy of 86%, and as described earlier, the 
actual benefit was so small that our model did not capture it. Also, 
the performance improvement due to reversal in these cases was 
minimal. 

3.5 Combining the Optimizations  
The framework can also be used to help determine the best way to 
combine optimizations that are applicable on a code segment.  
Using our optimization and code models, we can determine the 
effect of applying one optimization on the code, which would 
produce a transformed version of the loop, represented with our 
code model. This new version could then be used with a model of 
either another optimization or the same optimization that was 
initially applied. The result again would be a transformed 
representation of the code that has the effects of applying both 
optimizations. This process would continue until a final 
optimization model is used. The final code representation would 

then be used with a cache model to determine the impact of that 
optimization order. 
for (I = 1; I <= N; I++) 
  for (J=1; J<= N; J++) 
    for (K = 1; K<= N; K++) 
    CM[K][I]+=AM[K][J]*AM[J][K]+BM[I][J]*BM[J][I]; 
For example, consider the above code (with N equals to 10) that 
shows three embedded loops on which loop interchange can be 
applied in a number of different ways. The first two loops, I and J, 
can be interchanged with a benefit of only 0.2%. Although the 2nd 
and 3rd loops, J and K, can be interchanged, there is a 
performance penalty of 2.8%. However, by combining both 
interchanges, we get a new loop nest, J K I, which improves the 
performance by 12.3%. With our framework we can combine 
optimizations and get their benefits.  
We ran experiments on our benchmarks to determine the impact 
of finding an optimal combination of interchanges on loop nests.  
With our framework, we found a better interchange combination 
for eflux and bmcm than using individual loop interchanges. For 
eflux, applying an optimal combination of loop interchange had a 
25.3% performance improvement while, the best single loop 
interchange had a 18.6% improvement. In the case of bmcm, the 
best combination of loop interchange had a 55% improvement 
and the best single interchange had a 54% improvement. Thus our 
framework can be used to determine a combination of the same 
optimization even if there is no benefit for individual 
optimizations.  

3.6 Optimization Order and Configuration 
FPO can also be used to find the best ordering based on the code 
context for larger range of code than just one loop (could be the 
entire program).  To do this requires some type of searching 
strategy, such as integer linear programming, machine learning, 
AI planning techniques as well as ad hoc techniques. Our 
framework of models can be used to produce an objective 
function useful to guide the search strategy. 
We have used FPO to select a configuration for an optimization 
(e.g., tile size or the unroll factor). Just as the framework can be 
used to select among applicable optimizations, it can also be used 
to select among several configurations for the same optimization. 
We used the framework to select between two tile sizes (32 and 
64) for tiling. As an example, for the lgsi benchmark, there are 
different iteration counts at which a different tile size is preferred. 
At an iteration count of 126, a tile size of 32 gives a 7.4% 
improvement in cycle count over not tiling the loop. A tile size of 
64 gave a 0.5% degradation in performance. However, with a trip 
count of 162, the best tile size is 64 (performance improvement of 
1.2%). A tile size of 32 resulted in a performance degradation for 
this trip count. Our framework accurately predicted the impact of 
the different tile sizes for different trip counts for lgsi. We can use 
the results from FPO to determine the best optimization 
configuration (e.g., tile size) for a given loop configuration (e.g., 
trip count) as this example shows.  

4. RELATED WORK 
Although predicting the impact of applying an optimization is 
important for a static optimizer, it is critical for a dynamic 
optimizer because of time demands. One approach that has been 
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used in a dynamic setting to determine whether to apply an 
optimization is to perform offline experiments to determine the 
benefits and costs of applying an optimization and use this 
information during execution [AFGH00]. However, this approach 
does not adapt to the actual program execution context where an 
optimization is being applied. Previous work has addressed the 
phase ordering problem in a number of ways. Whitfield and Soffa 
addressed the problem of applying optimizations by analytically 
exploring the enabling and disabling properties of optimizations 
[WS97].  Cooper et al. proposed a biased-random search to find a 
good order of optimizations [CST01].  Others have combined 
optimizations to avoid the phase ordering in some cases [CC95]. 
In optimizing cache behavior, researches have focused on 
techniques to improve data locality. For instance, McKinley et al. 
[MCT96] proposed a compound algorithm to find desirable loop 
organizations according to a simple cache cost model. Some 
researchers presented frameworks to combine loop optimizations 
and array restructuring [CCCM01 and KCRB99]. There has also 
been some research on cache conflict misses. Ghosh et al. 
[GMM99] described methods for generating cache miss equations 
that give a detailed representation of cache behavior. G. Rivera et 
al. [RT98] described some optimizations for eliminating conflict 
misses. Another technique is to modify the cache configuration 
for each loop according to its access pattern exhibited by the nest 
[HKVI02]. Our work differs from the previous work on 
optimization by developing analytical models of optimizations 
with the focus on their impact on cache performance. Then we 
integrate the optimization models and cache model to predict the 
benefits of applying an optimization on cache. 

5. CONCLUSIONS 
In this paper, we described a novel framework, called FPO, for 
predicting the impact of optimizations on machine resources and 
performance. We demonstrated our framework and its benefit to 
tackling several problems that have been known to the compiler 
community for years about loop optimizations. We showed that 
prediction can be used to selectively apply a loop transformation 
when it will have a performance benefit based on cache resources 
and loop configuration. We also described and evaluated how the 
framework can be used to select the best optimization among 
several applicable ones for a particular code context. Finally, we 
showed the use of FPO to combine optimizations and select an 
optimization configuration (tile size). 
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Appendix 
Optimization Optimization Models 

Loop 

interchange 

INPUT: 〉〈∫∫∫
−

R
N

 
011

L  and interchange is legal for loops i, j; 

IMPACT FUNCTION: 

∫ ∫∫ ∫∫ ∫∫ ∫
−−

〉〈=〉〈
1 01 0

)()(
N j iN i j

eInterchang RgRf LLLLLL , where 

〉〉〈∈〈∀=〉〈 )( )()( rhRrRg and  

)),(()( CAlrh =  and  

][:][][:][)( jAiAAl ↔=   

Loop reversal INPUT: 〉〈∫∫∫
−

R
N

 
011

L  and reversal loop i; 

IMPACT FUNCTION: 

∫ ∫ ∫∫ ∫ ∫
−

−

−

〉〈=〉〈
1 01 0

)(
N i ub

step
lb

N i

reversal RRf LLLL  

Loop tiling INPUT: 〉〈∫∫∫
−

R
N

 
011

L  tiling loops tnt ,,1L , with tile size ntsts ,,1 L respectively; 

IMPACT FUNCTION: 

∫ ∫∫∫∫ ∫∫∫
−−

〉〈=〉〈
1 011 01

  )()(
N ttnN ttn

tiling RfgRf LLLLLL , where 

∫∫ ∫ ∫∫∫ ∫∫∫∫
− −−+

=
01 1 1 1

)1()(

101 1

1

1

)(
N N t x

h

tn x

nh

nN N lb
ts
ub

lb
ts
ub

ttn nn

n

n

g LLLLLLL , 

)1,min()( −+= iii tsxubih , and  

 

〉〉〈∈〈∀=〉〈 )),((  )( CAlRrRf  where ]0[)( AAl =  
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Optimization Optimization Models 

Loop 

unrolling 

INPUT: 〉〈∫∫∫
−

R
N

 
011

L and unroll factor U; 

IMPACT FUNCTION: 

〉〈=〉〈∫ ∫ ∫
−

restunroll

N

unroll lnlnRf ,)(
1 1 0

L  

  )( 
1 1 0

〉〈= ∫ ∫ ∫
−

× Rgln
N

Ustepunroll L     〉〈= ∫ ∫ ∫
− ×



 +

Rln
N U

U
ub

rest

1 1 0 1
L  

)),( )(^(^ )(
1

1
〉〉〈∈〈∀〉〈=〉〈

−

=
irhRrRRg

U

i
 

)),(,(),( iClAirh =  

isCNaAasiCl +≠−∈∀= ][ })0]1][[|{(),(  

Loop fusion INPUT: ) ( 1

011

1 〉〈∫∫∫
−

Rln
N

L , ) ( 2

011

2 〉〈∫∫∫
−

Rln
N

L , …, ) (
011

〉〈∫∫∫
−

m

N

m Rln L  

IMPACT FUNCTION: 

)(),,( ,,2

1 1 0

,121 〉〈〉〈〉〈=〉〈 ∫ ∫ ∫
−

m

N

mfusion RRRflnlnlnf LLL  

〉〈=〉〈〉〈〉〈
=

i
m

i
m RRRRf

1
21 ^),,,( L  

Loop 

distribution 

INPUT: 〉〈∫∫∫
−

R
N

 
011

L  and the sets of reference index which will be in lni , },...,{ 1 pii ; 

IMPACT FUNCTION: 

〉〈=〉〈∫ ∫ ∫
−

m

N

ondistributi lnlnlnRf LL ,,)( 21

1 1 0

 

∫ ∫ ∫
−

〉〈=
1 1 0

)(
N

ii Rfln L , where 〉〈=〉〈 ipiii rrrRf ,...,,)( 21  

 


