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Abstract 

Researchers have proposed to divide embedded 
applications into code partitions and to download 
partitions on demand from a wireless code server to 
enable a diverse set of applications for very tightly 
constrained embedded systems. This paper describes a 
new approach for managing the request and storage of 
code partitions and we explore the benefits of our scheme. 
 
1. Introduction 

As embedded systems have become very diverse, there 
is a niche of such systems that have very tight constraints 
for memory, power, network capabilities, and cost, such as 
smart cards. We envision that in the near future they will 
be running non-trivial applications and be able to make 
wireless network connections at any time. As an example, 
we can imagine a smart card using a heavy-weight 
protocol like RSA to authenticate a user with the network 
or a server. Due to constrained memory on a smart card, it 
may be infeasible to have the entire program loaded on the 
card at any one moment. To address such memory 
constraints, researchers have proposed to partition 
applications into pieces and to download code partitions 
on demand via a wireless link between the client and the 
server [4]. As wireless bandwidth is limited and radio 
transmissions have high power consumption, the 
downloaded code partitions should be cached in a Code 
Partition Buffer (CPB) for future use. In this work, we 
investigate low overhead ways for managing the CPB at 
the software level to minimize wireless transfers. We 
propose a novel CPB management scheme that is 
light-weight and efficient and we provide insight into why 
such a scheme is beneficial. 
 
2. Motivation 

Applications for smart card devices often have small 
code working sets. For example, we experimented with 
several benchmarks from MediaBench and MiBench and 
found that the most frequently executed 4 KB of code 
accounts for 98.3% of the dynamic instruction count. Such 
a small working set shows that a small buffer can 
effectively capture the dynamic code footprint of these 
applications. However, the code must be intelligently 
managed to assure that frequently executed code in the 
working set is not replaced by infrequently executed code. 

CPB management tries to keep active code in the buffer 
and to avoid including code which would not be executed 
in the near future. Similar to cache block and page 
replacement, we could use Least Recently Used, Least 
Frequently Used, and other policies to manage the CPB. 
However, such policies are expensive for a software 
managed CPB due to the need for instrumentation code to 

maintain usage information. 
Applications for smart card devices are special ones: 

Their behaviors are often relatively simple, and their code 
properties are stable across different inputs. It is well 
known that most execution time is spent on a small part of 
the program code. And recent studies further show that 
much time is spent on a set of frequently executed traces. 
A trace is a dynamic sequence of executed basic blocks 
that directly capture dynamic control flow. Hazelwood [1] 
showed that regardless of data inputs for SPEC2000 
programs, code traces that account for roughly 85% of the 
dynamic instruction count are repeated during successive 
executions. Hughes [2] found a similar trend for 
multimedia applications, where instructions per cycle and 
composition of instructions stay roughly constant at frame 
granularity, while the execution time of each frame can 
vary significantly. 

Resource constraints on smart cards and the expected 
stable behavior of their applications lead us to believe that 
complicated run-time CPB management policies (e.g. 
LRU) are not necessary and too expensive. This motivates 
the use of static profiling information to guide CPB 
management at run-time, which has very low run-time 
overhead while still achieving good performance and 
minimizing wireless transfers. 

 
3. Proposed Scheme 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Functionality for Code-Partitioned 
Embedded Systems 

 
Our proposed solution assigns code partitions different 

priorities in the CPB based on their frequency of execution 
(hotness) determined from program profiles. The 
functionality of our proposed solution is shown in Figure 1. 
We use static profiling to identify the hotness of each piece 
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of code and classify the code into three categories: (1) 
long-lived hot code, (2) intermittently or short-lived hot 
code, and (3) cold code. The hotness information is kept in 
the server.  

In our scheme, a lightweight software layer, Strata [3], 
is included in a smart card’s operating system. It controls 
an application’s execution and manages the CPB. Here, the 
CPB is partitioned into three parts: (1) persistent buffer, (2) 
temporary buffer, and (3) transient buffer, which hold 
different code partitions based on hotness. 

Before execution starts, Strata downloads long-lived hot 
code and stores it into the CPB because this code has the 
highest priority. This code is stored in the persistent buffer, 
which means the code is never replaced. Strata then starts 
program execution. If any code to be executed is not in the 
CPB, Strata sends a request to the server for the missing 
code. The server sends back the requested code with the 
hotness information for that piece of code. The hotness 
information determines where Strata stores the code. 
Intermittently or short-lived hot code is stored in the 
temporary buffer and cold code is stored in the transient 
buffer. The code in these two buffers can be replaced by 
newly downloaded code which will be stored in the same 
buffer. Replacement in the same buffer uses a simple 
circular management scheme to keep the overhead 
minimal. 

The server can adapt the dynamic behavior of an 
application by adjusting the hotness classification if any 
relatively cold code is requested too often. The smart card 
can be adaptive, too. If code misses happen too often, the 
smart card can change the size of the buffers to adapt to 
program behavior. 

 
4. Preliminary Results 

To validate our proposal, we investigated dynamic 
behavior of the MediaBench and MiBench applications. 
One of our preliminary results is shown in Table 1, which 
shows the benefit of dividing the CPB for different code 
partitions. We found that a significant proportion of 
instructions (27.5% on average) are executed only once. 
Hence, we need to be careful that these instructions do not 
evict needed code. In our approach, such code will be put 
in the transient buffer to avoid replacing hot code. 
Traditional policies such as LRU may replace hot code 
that will be executed in the near future with cold code and 
our policy avoids this problem. 

Use 
Domain Benchmark 

Executed 
Once Insn 

# 

Total 
Executed 

Insn # 
% 

ADMCPdec/enc 401/401 920/944 43.6/42.5 Telecom 
GSMdec/enc 1295/1290 4759/8007 27.2/16.1 
unEPIC/EPIC 2064/2484 6679/8159 30.9/30.4 Image 
JPEGdec/enc 3071/3034 8226/9949 37.3/30.5 

Video MPEG2dec/enc 1526/5785 8412/22201 18.1/26.1 
Security BLOWFISHdec/enc 311/307 1833/1830 17.0/16.8 
Control QSORT 621 3045 20.4 

Average --- --- 27.5 
Table 1: Executed Once Instructions 

 
5. Discussion 

Due to the simplicity of the proposed CPB management 
scheme, it has a low overhead. We also believe it is 

efficient because the dynamic property of code is exploited 
by profiling. In addition, there are a number of interesting 
issues related to this scheme, described below. 

Large Local Memory. Some other embedded systems, 
like PDA’s and mobile phones, have a larger local memory 
than a smart card. Even if the local memory is large 
enough to hold the whole program (e.g., as in a PDA), 
sending the code partitions on demand could still be 
beneficial when the executed code is a small portion of the 
whole program. One of our experiments showed that the 
average amount of code executed by MediaBench and 
MiBench applications is only 11.1% of the total static code 
size (the range is from 2.2% to 31.9%). 

Security. The transmissions between the server and the 
smart card might leak application execution information. 
Zhang [4] proposed a tamper-resistant partitioning method 
that can be easily incorporated in our scheme. The 
transmission of long-lived hot code is insensitive to input, 
and when most execution time is in this code, little 
information is leaked. Furthermore, code can be encrypted 
by the server and decrypted by the smart card.  

Partial Computing at Server Side. The server can 
perform partial compilation, optimization, or execution 
before sending code to the smart card. This may reduce 
code size (transmission overhead) and execution overhead. 

Code Traces Layout. Arranging the code as traces can 
reduce instruction cache misses and can improve 
application performance. In our scheme, the server can 
organize traces in the persistent buffer and the client can 
arrange the temporary buffer. 

Code Pre-fetch. Based on profiling information and a 
smart card’s request history, the server could predict future 
requests and pre-send the code to the smart card. 

Setup Delay. Sometimes it is possible that sending 
long-lived hot code prior to execution may cause 
unacceptable setup delay. To reduce the setup delay, the 
code needed to start program execution may be 
downloaded first and the remaining code can be 
downloaded on demand. 

 
6. Future Work 

To investigate the benefit of our CPB management 
scheme, we are implementing it in Strata. Our initial 
results are promising and we expect that our scheme will 
significantly reduce wireless transmission overhead. 
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