
Profile Guided Management of Code Partitions for Embedded Systems

Shukang Zhou Bruce R. Childers Naveen Kumar
Department of Computer Science, University of Pittsburgh

Pittsburgh, PA 15260
{zhou, childers, naveen}@cs.pitt.edu

Abstract

Researchers have proposed to divide embedded
applications into code partitions and to download
partitions on demand from a wireless code server to
enable a diverse set of applications for very tightly
constrained embedded systems. This paper describes a
new approach for managing the request and storage of
code partitions and we explore the benefits of our scheme.

1. Introduction

As embedded systems have become very diverse, there
is a niche of such systems that have very tight constraints
for memory, power, network capabilities, and cost, such as
smart cards. We envision that in the near future they will
be running non-trivial applications and be able to make
wireless network connections at any time. As an example,
we can imagine a smart card using a heavy-weight
protocol like RSA to authenticate a user with the network
or a server. Due to constrained memory on a smart card, it
may be infeasible to have the entire program loaded on the
card at any one moment. To address such memory
constraints, researchers have proposed to partition
applications into pieces and to download code partitions
on demand via a wireless link between the client and the
server [4]. As wireless bandwidth is limited and radio
transmissions have high power consumption, the
downloaded code partitions should be cached in a Code
Partition Buffer (CPB) for future use. In this work, we
investigate low overhead ways for managing the CPB at
the software level to minimize wireless transfers. We
propose a novel CPB management scheme that is
light-weight and efficient and we provide insight into why
such a scheme is beneficial.

2. Motivation

Applications for smart card devices often have small
code working sets. For example, we experimented with
several benchmarks from MediaBench and MiBench and
found that the most frequently executed 4 KB of code
accounts for 98.3% of the dynamic instruction count. Such
a small working set shows that a small buffer can
effectively capture the dynamic code footprint of these
applications. However, the code must be intelligently
managed to assure that frequently executed code in the
working set is not replaced by infrequently executed code.

CPB management tries to keep active code in the buffer
and to avoid including code which would not be executed
in the near future. Similar to cache block and page
replacement, we could use Least Recently Used, Least
Frequently Used, and other policies to manage the CPB.
However, such policies are expensive for a software
managed CPB due to the need for instrumentation code to

maintain usage information.
Applications for smart card devices are special ones:

Their behaviors are often relatively simple, and their code
properties are stable across different inputs. It is well
known that most execution time is spent on a small part of
the program code. And recent studies further show that
much time is spent on a set of frequently executed traces.
A trace is a dynamic sequence of executed basic blocks
that directly capture dynamic control flow. Hazelwood [1]
showed that regardless of data inputs for SPEC2000
programs, code traces that account for roughly 85% of the
dynamic instruction count are repeated during successive
executions. Hughes [2] found a similar trend for
multimedia applications, where instructions per cycle and
composition of instructions stay roughly constant at frame
granularity, while the execution time of each frame can
vary significantly.

Resource constraints on smart cards and the expected
stable behavior of their applications lead us to believe that
complicated run-time CPB management policies (e.g.
LRU) are not necessary and too expensive. This motivates
the use of static profiling information to guide CPB
management at run-time, which has very low run-time
overhead while still achieving good performance and
minimizing wireless transfers.

3. Proposed Scheme

Figure 1: Functionality for Code-Partitioned
Embedded Systems

Our proposed solution assigns code partitions different

priorities in the CPB based on their frequency of execution
(hotness) determined from program profiles. The
functionality of our proposed solution is shown in Figure 1.
We use static profiling to identify the hotness of each piece

Code Server

Profile

Hotness
Info

Code Partitions

Download Application Code
Partitions on Demand

Application
Strata Software

Hardware Code Partition Buffer

Processor

Smart Card

Wireless
Networks

of code and classify the code into three categories: (1)
long-lived hot code, (2) intermittently or short-lived hot
code, and (3) cold code. The hotness information is kept in
the server.

In our scheme, a lightweight software layer, Strata [3],
is included in a smart card’s operating system. It controls
an application’s execution and manages the CPB. Here, the
CPB is partitioned into three parts: (1) persistent buffer, (2)
temporary buffer, and (3) transient buffer, which hold
different code partitions based on hotness.

Before execution starts, Strata downloads long-lived hot
code and stores it into the CPB because this code has the
highest priority. This code is stored in the persistent buffer,
which means the code is never replaced. Strata then starts
program execution. If any code to be executed is not in the
CPB, Strata sends a request to the server for the missing
code. The server sends back the requested code with the
hotness information for that piece of code. The hotness
information determines where Strata stores the code.
Intermittently or short-lived hot code is stored in the
temporary buffer and cold code is stored in the transient
buffer. The code in these two buffers can be replaced by
newly downloaded code which will be stored in the same
buffer. Replacement in the same buffer uses a simple
circular management scheme to keep the overhead
minimal.

The server can adapt the dynamic behavior of an
application by adjusting the hotness classification if any
relatively cold code is requested too often. The smart card
can be adaptive, too. If code misses happen too often, the
smart card can change the size of the buffers to adapt to
program behavior.

4. Preliminary Results

To validate our proposal, we investigated dynamic
behavior of the MediaBench and MiBench applications.
One of our preliminary results is shown in Table 1, which
shows the benefit of dividing the CPB for different code
partitions. We found that a significant proportion of
instructions (27.5% on average) are executed only once.
Hence, we need to be careful that these instructions do not
evict needed code. In our approach, such code will be put
in the transient buffer to avoid replacing hot code.
Traditional policies such as LRU may replace hot code
that will be executed in the near future with cold code and
our policy avoids this problem.

Use
Domain Benchmark

Executed
Once Insn

Total
Executed

Insn #
%

ADMCPdec/enc 401/401 920/944 43.6/42.5 Telecom
GSMdec/enc 1295/1290 4759/8007 27.2/16.1
unEPIC/EPIC 2064/2484 6679/8159 30.9/30.4 Image
JPEGdec/enc 3071/3034 8226/9949 37.3/30.5

Video MPEG2dec/enc 1526/5785 8412/22201 18.1/26.1
Security BLOWFISHdec/enc 311/307 1833/1830 17.0/16.8
Control QSORT 621 3045 20.4

Average --- --- 27.5
Table 1: Executed Once Instructions

5. Discussion

Due to the simplicity of the proposed CPB management
scheme, it has a low overhead. We also believe it is

efficient because the dynamic property of code is exploited
by profiling. In addition, there are a number of interesting
issues related to this scheme, described below.

Large Local Memory. Some other embedded systems,
like PDA’s and mobile phones, have a larger local memory
than a smart card. Even if the local memory is large
enough to hold the whole program (e.g., as in a PDA),
sending the code partitions on demand could still be
beneficial when the executed code is a small portion of the
whole program. One of our experiments showed that the
average amount of code executed by MediaBench and
MiBench applications is only 11.1% of the total static code
size (the range is from 2.2% to 31.9%).

Security. The transmissions between the server and the
smart card might leak application execution information.
Zhang [4] proposed a tamper-resistant partitioning method
that can be easily incorporated in our scheme. The
transmission of long-lived hot code is insensitive to input,
and when most execution time is in this code, little
information is leaked. Furthermore, code can be encrypted
by the server and decrypted by the smart card.

Partial Computing at Server Side. The server can
perform partial compilation, optimization, or execution
before sending code to the smart card. This may reduce
code size (transmission overhead) and execution overhead.

Code Traces Layout. Arranging the code as traces can
reduce instruction cache misses and can improve
application performance. In our scheme, the server can
organize traces in the persistent buffer and the client can
arrange the temporary buffer.

Code Pre-fetch. Based on profiling information and a
smart card’s request history, the server could predict future
requests and pre-send the code to the smart card.

Setup Delay. Sometimes it is possible that sending
long-lived hot code prior to execution may cause
unacceptable setup delay. To reduce the setup delay, the
code needed to start program execution may be
downloaded first and the remaining code can be
downloaded on demand.

6. Future Work

To investigate the benefit of our CPB management
scheme, we are implementing it in Strata. Our initial
results are promising and we expect that our scheme will
significantly reduce wireless transmission overhead.

7. References
[1] K. Hazelwood and M. D. Smith. Characterizing

Inter-Execution and Inter-Application Optimization
Persistence. Workshop on Exploring the Trace Space for
Dynamic Optimization Techniques. June 2003.

[2] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J.
Srinivasan. Variability in the Execution of Multimedia
Applications and Implications for Architecture. Intl. Symp.
on Computer Architecture. June 2001.

[3] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson,
and M. L. Soffa. Reconfigurable and Retargetable Software
Dynamic Translation. Intl. Symp. on Code Generation and
Optimization (CGO’03). March 2003.

[4] T. Zhang, S. Pande, and A. Valverde. Tamper-Resistant
Whole Program Partitioning. Conf. on Languages, Compilers,
and Tools for Embedded Systems (LCTES'03). June 2003.

