
Page 1

Continuous Compilation for
Aggressive and Adaptive Code

Transformation

Bruce R. Childers

University of Pittsburgh
Pittsburgh, Pennsylvania, USA

childers@cs.pitt.edu
http://www.cs.pitt.edu/coco

This work is a collaboration of many people!
Sponsored by Next Generation Software, National Science Foundation.

Code Optimization

• Sophisticated algorithms exist for many
optimizations that do quite well

• We are at the point of diminishing returns in
applying optimizations

• The challenge is to go beyond current
optimization improvements – Develop more
effective ways to apply optimizations

Page 2

Continuous Compilation

• Apply optimizations both statically at compile-
time and dynamically at run-time with
optimization planning at compile-time

• Plan for both static and dynamic optimizations
– Understand interactions of existing optimizations
– Efficacy of both static and dynamic optimizations

• Determine where to apply optimizations, which
ones to apply, the order in which to apply them,
and their parameters

Outline

• Introduction: Continuous Compilation
• CoCo Architecture
• Predicting Optimization

– FPO: A Framework for Predicting Optimizations
– Using FPO for optimization planning

• CoCo Run-time System
– Low overhead software dynamic translation
– Debugging dynamically translated code

• Summary

Page 3

Continuous Compilation

Static Compilation
(using profiles,

estimation models)

Phase 1

Static Compilation
(using profiles,

estimation models)

Phase 1

Program Execution
and Dynamic

Optimization (using
monitor and

optimization plans)

Phase 2

Program Execution
and Dynamic

Optimization (using
monitor and

optimization plans)

Phase 2

Off-line Adaptation
and Refinement of

Monitor and
Optimization Plans

Phase 3

Off-line Adaptation
and Refinement of

Monitor and
Optimization Plans

Phase 3

Recompilation and
Regeneration of

Monitor and
Optimization Plans

Phase 4

Recompilation and
Regeneration of

Monitor and
Optimization Plans

Phase 4

As time passes, the continuous compiler moves through phases, possibly revisiting earlier ones.

Target applications: Long running programs that have different
phases of execution.

Prediction &
Planning

Dynamic
Compilation

CoCo Architecture

Dy namic
Optimizer and

SDT

Monitor

Continuous
State

Monitor
Plans

Opt.
Plans

Program

A
pp

lic
at

io
n

In
fo

rm
at

io
n

R
ep

os
ito

ry

Application

Static Compiler Dynamic Compiler

Prof ilesProgram
Models

Static Optimizer

Planner

M
ac

hi
ne

 a
nd

O
pt

im
iz

at
io

n
In

fo
rm

at
io

n
R

ep
os

ito
ry

Estimation
Models

Machine
Models

Conductor

Debugger

Checker

Checker

Page 4

CoCo’s Prediction Framework

• Predict the impact of optimizations
• With estimates of benefit and penalty:

– Decision about what optimizations to apply
– Where to apply them
– In what order to apply

Taking into account the code context and machine
resources

Code Predict
Impact

Apply

Don’t
Apply

Beneficial

Not Beneficial

Motivation

• Performance problems of the optimizations
– Optimizations may degrade performance in some

circumstances
– Optimizations interact with one another by enabling and

disabling other optimizations

• Optimizations often applied in an ad hoc fashion
– Simple heuristic: always apply if applicable
– Predetermined order to apply optimizations
– Fixed configurations of optimizations

Page 5

Challenges

• Performance varies widely, based on
– Code context (e.g., loop trip count)
– Configuration of optimizations (e.g. loop unrolling factor)
– Machine configurations (e.g. cache configuration)
– The order of optimizations

• Many resources impact overall performance
– Cache configuration
– Instruction scheduling rules
– Register numbers and types

Example: Always Apply Loop Opt.

-50%

-25%

0%

25%

50%

alv
 (1

00
)

lgs
i (

98
)

lgs
i (

12
8)

sm
si

(12
4)

tfs
i (4

2)

biq
ua

d_
N(90

)

gd
ev

cd
j(1

00
)

pe
gw

it(
10

0)
ad

i
efl

ux

to
m

ca
t

vp
en

ta

Interchange Tiling Reversal

52%

-111% -120% -108% -85% -103%

Page 6

Our Approach

• Build and develop analytic and experimental
models to predict when to apply an optimization,
without actually applying the optimization

– Need models of particular optimizations
– Need models of the code
– Need models of the resources that are effected

• Based on models, make decisions about how to
apply optimizations

– We don’t need accurate models, just the trend needs to be
accurate enough to do the estimates

FPO: Framework for Predicting
Optimizations

Source Code

Code

Optimizations

...

Resources

...

FPO: a Framework, consisting of models, for Predicting the
impact of Optimizations

Consider both scalar opts (e.g., PRE) and loop opts

Prediction
...

Plug ‘n Play Models
1. Extract code context
2. Model effect of the

optimization
3. Model effect on the

machine resources

Page 7

Code Model

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Express code characteristics that effect resources

Automatically constructed from program
Abstracts only relevant details – it is not an intermediate rep.

Example Characterisics
Iteration space
References
Register pressure
Computation

Optimization Model

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Model how optimization transforms code model

Describes optimization semantics – how the code model is
affected by the predicted application of the optimization

Example Characterisics
Effect on Iteration space
Code edits due to opt.
Computation changes

Page 8

Resource Model

Source Code

Code

Optimizations

...

Resources

... Prediction
...

How the code model effects machine resources

What machine resources are available & abstract only details
impacted by the code (and optimization) model

Example Characterisics
Num. registers & types
Computation latencies
Cache/memory hierarchy

Predicted Optimization Profit

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Compare transformed & non-transformed code

Prediction of the profit (or penalty) is the difference between
unoptimized and optimized

Example Characterisics
Cache misses inc./dec.
Register spills inc./dec.
Reduction in computation

Page 9

FPO: Scalar Optimizations

• Transformations that operate on scalar code
– E.g., constant propogation, dead code elimination, partial

redundancy elimination

• Can have several impacts
– Reduce amount of computation
– Change register pressure (for the better or for the worse!)
– May change memory referencing pattern and cache behavior

• FPO (initially) considers
– Affect on computation
– How register pressure helps or hurts spills and reloads

4 hardware registers – no spill

LIVE RANGES

1
2
3
4
5
6
7
8

a
b

c

d
f

g

v

BB4

CODE

1: a 1
2: b 2

3: c a * b
3: v a * b

3’: c v

4: c 1
4’: v a * b

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

8: h v

1

32

4

Partial Redundancy Elimination

4 hardware registers – one spillVariables a, b are used later 4 hardware registers – no spill

Page 10

Code Model

(before PRE)

1: IN ()

OUT (a, b)

2: IN (a, b)

OUT (a, b, c)

3: IN (a, b)

OUT (a, b, c)

4: IN (c, a, b)

OUT(…)

Code Model

(after PRE)

1: IN ()

OUT (a, b)

2: IN (a, b)

OUT (c, v)

3: IN (a, b)

OUT (c, v)

4: IN (c, v)

OUT(…)

Predicting the Profit of PRE

PRE OPT Model

1: <Ins exp USE [Bd, Sd]>

<Ins V DEF [Bd, Sd]>

2: <Del exp USE [Bs, Ss]>

<Ins B USE [Bs, Ss]>

3: <Del Ti DEF [Ba, Sa]>

<Ins V DEF [Ba, Sa]>

<Ins Ti DEF [Ba, Sa +1]>

<Ins V USE [Ba, Sa+1]>

Framework for Predicting Optimizations

(“Prediction Engine”)

Resource Model
(regs)

OPT Model for register
allocation

Prediction: # of load & stores increased or decreased

CODE

1: a 1
2: b 2

3: c a * b 4: c 1

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

1

32

4

CODE

1: a 1
2: b 2

4: c 1
4’: v a * b

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

8: h v

1

32

4

3: c a * b
3: v a * b

3’: c v

Current Models

• Scalar optimizations [CGO’05]
– Constant, copy, loop invariant code motion (LICM), global

value numbering (GVN), and partial redundancy elimination
(PRE)

– Code model represents live ranges and computation
– Resource model represents registers and machine latencies

• Loop optimizations [LCTES’03]
– Loop unrolling, tiling, distribution, interchange, reversal
– Code model represents iteration space & references
– Resource model represents how cache behaves, uses cache

misses as prediction of optimization impact

Page 11

Selectively
apply

optimizations

Source Code Code

Optimizations

...

Resources

...

...

Choose
most beneficial
optimizations

Search
best order

or configuration

Combine
optimizations

Using FPO for Optimization Planning

Predictions
Opt. Planners

Experiments

• Benchmarks: SPEC2K, MiBench, MediaBench
• Platform

– MachSUIF compiler, implemented models & optimizations
– x86 AMD Athlon 1.4 GHz, 2 GB memory, RedHat Linux

• Consider PRE and LICM (have done others)
• Model accuracy
• Heuristic approaches
• Planner with FPO vs. other approaches

– Applying a single optimization (heuristic vs. planning)
– Finding a good optimization order (experimental vs. model)

Page 12

PRE & LICM Model Accuracy

88.7030634591.12433475twolf

89.77798878.574456bzip2

87.5730334681.13431530vortex

90.67687587.87210293parser

82.69435286.274451mcf

94.3521723096.04291303vpr

84.44384589.584348gzip

%AccacyCPTP%AccacyCPTP

LICMPRE
Benchmark

PRE & LICM with Heuristic

1.912.140.380.520.021.140.881.07twolf
4.576.707.357.027.918.197.527.35bzip2
5.284.995.694.883.864.665.254.73vortex
2.231.992.862.551.351.701.501.25parser
2.472.582.622.502.222.312.352.37mcf
0.690.52-0.38-0.401.831.810.751.22vpr
3.275.403.292.904.103.783.753.50gzip

1684016840

Heuristic-driven LICMHeuristic-driven PRE

Benchmark

Best performance

Page 13

PRE Heuristic vs. Planning with FPO

0

2

4

6

8

10

gzip vpr mcf parser vortex bzip2 twolf geomean

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

A-PRE Best-heuristic Heuristic-8 P-PRE

LICM Heuristic vs. Planning with FPO

0

2

4

6

8

10

gzip vpr mcf parser vortex bzip2 twolf geomean

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

A-LICM Best-heuristic Heuristic-8 P-LICM

Page 14

Finding Good Optimization Orders

• Planning with genetic algorithms
– Adaptively changing optimization order is effective
– Search for “best” optimization sequence
– Score solutions by executing the resulting program
– Typically, only small programs are considered
– Almagor [LCTES 2004), Kulkarni [PLDI 2004]

• Using FPO to improve planning performance
– Use Almagor GA approach
– Score solutions with models, avoiding need to run program
– As good sequences (performance) as experimental scoring
– Faster compilation times
– Larger, more realistic programs

Experiments

• Scalar optimizations
– Global value numbering (G), Constant propagation (C), Copy

propagation (O), Constant folding (N), PRE (P), LICM (L),
Register allocation (graph coloring) (R), dead code elimination (D)

• Fixed sequence: GOCDPOLOD [Whitfield97]
• GA based on Almagor GA [LCTES 2004]
• 10 generations, 20 sequences per generation

– Initial sequence is fixed order sequence
– 10% best sequences survive each generation, remaining formed

by crossover operation and character-by-character with 5%
mutation rate

– Past sequence results are hashed to avoid re-evaluating
– Optimization orders determined on module level

Page 15

Run-Time Performance

0

5

10

15

20

bitcnt dijkstra FFT adpcm mpeg gzip mcf parser bzip2

%
 Im

pr
ov

em
en

t

Fixed Experimental FPO

MiBench MediaBench SPEC2K

Compile-Time

0

5

10

15

20

25

30

35

40

45

bitcnt dijkstra FFT adpcm mpeg gzip mcf parser bzip2

C
om

pi
le

 T
im

e
(H

ou
rs

)

Experimental FPO
46.1 55.6

MiBench MediaBench SPEC2K

Page 16

CoCo Architecture

Dy namic
Optimizer and

SDT

Monitor

Continuous
State

Monitor
Plans

Opt.
Plans

Program

A
pp

lic
at

io
n

In
fo

rm
at

io
n

R
ep

os
ito

ry

Application

Static Compiler Dynamic Compiler

Prof ilesProgram
Models

Static Optimizer

Planner

M
ac

hi
ne

 a
nd

O
pt

im
iz

at
io

n
In

fo
rm

at
io

n
R

ep
os

ito
ry

Estimation
Models

Machine
Models

Conductor

Debugger

Checker

Checker

CoCo Run-Time System

Application Binary

CPU

Dynamic Translator
OS

• Based on Software Dynamic
Translation

• Layer of software between application
binary and the OS/CPU.

• Application’s instructions are
examined and modified before being
executed on the CPU.

• Uses include binary translation,
dynamic optimization, & others

Page 17

CoCo Run-Time System

• Strata SDT toolkit [CGO’03]
– Application’s instructions are examined

and modified before being executed.
– Reconfigurable & retargetable
– Low overhead translation

• Provides functionality for run-time
translation & optimization

– Multithreading & interrupt handling
– Memory management
– Translated code caching
– Code analysis

Targets: MIPS/Irix, SPARC/Solaris, x86/Linux, MIPS/PS2, PPC/MacOS
Apps: Embedded SW [DATE’04], self management [WOSS’04], arch. simulation

Application Binary

Operating System

CPU

Context
Capture

New
PC

Context
Switch

Cached? New
Fragment

Fetch

Decode

Translate

Next PC

Dynamic Translator

Finished?

Overhead Reduction in Strata

• Improve run-time performance of translated code,
without applying code optimizations

• Efficient execution in fragment cache [CGO’03,IJPP]
– Fragment linking, partial call inlining, fast returns, indirect branch

translation caching, instruction trace formation
– SPARC: 22.9x (no transformations) to 1.3x (with transformations)
– x86: 1.3x, Dynamo/RIO [Bruening CGO’03]: 1.2x

• Program instrumentation [ICSE’05,WOSS’04,Traces’03]
– Reduce amount of instrumentation inserted
– Reduce the cost of an individual piece of instrumentation code
– 1.26x-2.63x speedup over no optimization for several profilers

Page 18

Debugging Dynamically
Translated Code

• Source-level debugging – current debuggers
won’t work on dynamically translated programs!

• New challenges
– Dynamic code generation and duplication
– Branch trampolines
– Overhead reduction techniques
– Post-mortem debugging

• Approach
– Dynamic debug mappings
– Generate mappings based on code translations and use

the mappings to map translated code back to source level

TDB: A Debugger for SDT

Mapping
Table

Mapping
Table

Breakpoint
Table

Breakpoint
Table

Strata
SDT

Generate &
Update Mappings

Read Breakpoints

TDB

Read Mappings to
Map Addresses

Record Active
Breakpoints

Interception
Layer

Provides source-level transparency
Hides all dynamic code translations
Handles basic translations & overhead reductions

Page 19

Related Work

• Effective optimization
– Adaptive optimizing compilers with genetic algorithm searches

[Cooper02,Almagor04 & Kulkarni04]
– Iterative compilation [Knijnenburg03]
– Optimization space exploration (OSE) [Triantafyllis03]
– Analytic models [Wolf91, Sarkar97, McKinley96, Hu02]

• Software dynamic translation
– Dynamo/RIO, Dynamo, Mojo, Vulcan, Walkabout, DELI

Summary

• A new planning-based approach to compilation
called Continuous Compilation (CoCo)

• Apply whole suite of optimizations with constant
refinement of optimizations and plans for them

• Results
– Highly accurate predictions for simple loop optimizations
– Highly accurate predictions for scalar optimizations
– Low overhead run-time system based on SDT
– INS-OP reduces instrumentation cost
– TDB debugger for dynamically translated code

Page 20

Collaborators

Many students have participated, including:

• FPO: Min Zhao (Pitt)
• Program instrumentation: Naveen Kumar (Pitt)
• Strata: Kevin Scott (UVA/Google) and Naveen Kumar
• Overhead reduction: Kevin Scott, Naveen Kumar,

Jason Mars (Pitt)
• Debugging: Naveen Kumar

Faculty: Mary Lou Soffa & Jack Davidson (UVA)

childers@cs.pitt.edu

http://www.cs.pitt.edu/coco

More Information

