Continuous Compilation for
Aggressive and Adaptive Code
Transformation

Bruce R. Childers

University of Pittsburgh
v Pittsburgh, Pennsylvania, USA
bS] childers@cs.pitt.edu
EEEY http://www.cs.pitt.edu/coco

This work is a collaboration of many people!
@ Sponsored by Next Generation Software, National Science Foundation.

Code Optimization

» Sophisticated algorithms exist for many
optimizations that do quite well

» We are at the point of diminishing returns in
applying optimizations

* The challenge is to go beyond current
optimization improvements — Develop more
effective ways to apply optimizations

Page 1

Continuous Compilation

Apply optimizations both statically at compile-
time and dynamically at run-time with
optimization planning at compile-time

Plan for both static and dynamic optimizations
— Understand interactions of existing optimizations
— Efficacy of both static and dynamic optimizations

Determine where to apply optimizations, which
ones to apply, the order in which to apply them,
and their parameters

Outline

Introduction: Continuous Compilation
CoCo Architecture
Predicting Optimization
— FPO: A Framework for Predicting Optimizations
— Using FPO for optimization planning
CoCo Run-time System
— Low overhead software dynamic translation
— Debugging dynamically translated code

Summary

Page 2

Continuous Compilation

Prediction & Dynamic
Planning Compilation

Static Compilation Program Execution Off-line Adaptation Recompilation and
(using profiles, and Dynamic and Refinement of Regeneration of

estimation models) Optimization (using Monitor and Monitor and
monitor and Optimization Plans Optimization Plans

optimization plans)

Phase 3

Phase 2 Phase 4

As time passes, the continuous compiler moves through phases, possibly revisiting earlier ones.

Target applications: Long running programs that have different
phases of execution.

CoCo Architecture

Estimation Machine Program
Models Models Models
< D Continuous Checker
-
852 552 State)
G T= O 250 g
ENET SE% [Y
%é‘ag 568 |- ./ Monitor
S8E & SEp |a— "\ Plans Dy namic
= Conductor [—= Optimizerand

. Opt. SDT
"\ Plans #
Application - Debugger Monitor
Planner
\ J
StaticOptimizer P Program
Checker |4 | o Q

Static Conpiler Dynamic Conpiler

Page 3

CoCo’s Prediction Framework

Predict
Impact

» Predict the impact of optimizations

» With estimates of benefit and penalty:
— Decision about what optimizations to apply
— Where to apply them
— In what order to apply

Taking into account the code context and machine
resources

Motivation

» Performance problems of the optimizations

— Optimizations may degrade performance in some
circumstances

— Optimizations interact with one another by enabling and
disabling other optimizations

» Optimizations often applied in an ad hoc fashion
— Simple heuristic: always apply if applicable
— Predetermined order to apply optimizations
— Fixed configurations of optimizations

Page 4

Challenges

Performance varies widely, based on
— Code context (e.g., loop trip count)
— Configuration of optimizations (e.g. loop unrolling factor)
— Machine configurations (e.g. cache configuration)
— The order of optimizations

Many resources impact overall performance
— Cache configuration
— Instruction scheduling rules
— Register numbers and types

Example: Always Apply Loop Opt.

52%

50%

O Interchange M Tiling O Reversal

25% -

Y T |

-25% -
-50% !
-111% =120% 108% 85% 103&
N N Q X
\@e\\o@ S ES S s
s & 6” qP’ & >
98"’

Page 5

Our Approach

 Build and develop analytic and experimental
models to predict when to apply an optimization,
without actually applying the optimization
— Need models of particular optimizations
— Need models of the code
— Need models of the resources that are effected

* Based on models, make decisions about how to
apply optimizations
— We don'’t need accurate models, just the trend needs to be
accurate enough to do the estimates

FPO: Framework for Predicting
Optimizations

Plug ‘n Play Models

A S T Extract code aontext
' Code 2. Model effect of the
: optimization

::' \ Resources | : — 3. Model effect on the
y - - : machine resources
: Optimizations

FPO: a Framework, consisting of models, for Predicting the
impact of Optimizations

Consider both scalar opts (e.g., PRE) and loop opts

Page 6

Code Model

Example Characterisics

Code 5 Iteration space
\ References
- Resources m Register pressure
/ - - Computation
Optimizations :

Express code characteristics that effect resources

Automatically constructed from program
Abstracts only relevant details — it is not an intermediate rep.

Optimization Model

: Example Characterisics
Code : Effect on Iteration space
Code edits due to opt.

Resources

y Y \ _ Computation changes
Prediction

. A 4 - L] -

: |Optimizations :

Model how optimization transforms code model

Describes optimization semantics — how the code model is
affected by the predicted application of the optimization

Page 7

Resource Model

: Example Characterisics
Code : Num. registers & types
Computation latencies

T > ﬁsourci m Cache/memory hierarchy

How the code model effects machine resources

What machine resources are available & abstract only details
impacted by the code (and optimization) model

Predicted Optimization Profit

: Example Characterisics
Code : Cache misses inc./dec.
Register spills inc./dec.

Resources

y ¥ \ _ Reduction in computation
Prediction

. A 4 - LR R -

: |Optimizations :

Compare transformed & non-transformed code

Prediction of the profit (or penalty) is the difference between
unoptimized and optimized

Page 8

FPO: Scalar Optimizations

» Transformations that operate on scalar code

— E.g., constant propogation, dead code elimination, partial
redundancy elimination

« Can have several impacts
— Reduce amount of computation
— Change register pressure (for the better or for the worse!)
— May change memory referencing pattern and cache behavior

* FPO (initially) considers
— Affect on computation
— How register pressure helps or hurts spills and reloads

Partial Redundancy Elimination

CODE LIVE RANGES
1
lra< 1
2:b€&2
2 /\ 3 1 2
b
3:c€a*b 4:c€ 1 2
3:v€&a*b 4:v&a*b 3 ¢ M
3:c€v
4
\/ [inls S S i AR -~ BB4
4 0 f :
5:d€c+1 6 !
G:f€dre ' | g |
T:g &< f+d ' !
8:h&a*b R D) N D R
:h&<v
Variables a, b are used later 4 Inardware registers — oo sspill

Page 9

Predicting the Profit of PRE

1 CODE Code Model PRE OPT Model Code Model
(before PRE) 1: <Ins exp USE [Bd, Sd]> (after PRE)
) 2b€2 3 LINQ <Ins V DEF [Bd, Sd]> 1INQ)
3:c&a*h el OUT (a, b) 2: <Del exp USE [Bs, Ss]> OUT (a, b)
323‘; éé b |4vearhd 2: IN (a, b) <Ins B USE [Bs, Ss]> 2:IN (a, b)
J:.C A
. /. OUT (a, b, c) 3: <Del Ti DEF [Ba, Sa]> OUT (c, v)
4| 5:d€c+l 3:IN (a, b) <Ins V DEF [Ba, Sa]> 3:IN (a, b)
6:f&<d+c .
70 € fHd OUT (a, b, ©) <Ins Ti DEF [Ba, Sa +1]> OUT (c, v)
8:h€a*b 4:IN (c, a, b) <Ins V USE [Ba, Sa+1]> 4:IN (c, v)
Sihev ouT(..) OUT(..)
R Model . r
esource Model - .
(regs) Framework for Predicting Optimizations
(“Prediction Engine”)
OPT Model for register —|
allocation

v

Prediction: # of load & stores increased or decreased

Current Models

» Scalar optimizations [CGO’05]

— Constant, copy, loop invariant code motion (LICM), global

value numbering (GVN), and partial redundancy elimination
(PRE)

— Code model represents live ranges and computation
— Resource model represents registers and machine latencies

» Loop optimizations [LCTES’03]
— Loop unrolling, tiling, distribution, interchange, reversal
— Code model represents iteration space & references

— Resource model represents how cache behaves, uses cache
misses as prediction of optimization impact

Page 10

Resources

L. O]

Selectively Choose Search .
- Combine
apply most beneficial best order L
L oo] . optimizations
optimizations optimizations or configuration
Experiments

* Benchmarks: SPEC2K, MiBench, MediaBench

* Platform
— MachSUIF compiler, implemented models & optimizations
— x86 AMD Athlon 1.4 GHz, 2 GB memory, RedHat Linux

+ Consider PRE and LICM (have done others)
* Model accuracy
* Heuristic approaches

* Planner with FPO vs. other approaches
— Applying a single optimization (heuristic vs. planning)
— Finding a good optimization order (experimental vs. model)

Page 11

PRE & LICM Model Accuracy

PRE LICM
Benchmark CP %Accacy CP % Accacy

gzip 48 | 43 89.58 45 | 38 84.44
vpr 303 | 291 96.04 230 | 217 94.35
mcf 51 | 44 86.27 52 43 82.69
parser 293 | 210 87.87 75 68 90.67
vortex 530 | 431 81.13 346 | 303 87.57
bzip2 56 | 44 78.57 88 79 89.77
twolf 475 | 433 91.12 345 | 306 88.70

PRE & LICM with Heuristic

Benchmark

Heuristic-driven PRE

8 16

parser

vortex 4.73
bzip2 7.35
twolf 1.07

Heuristic-driven LICM

2.62

2.86

5.69

7.35

- Best performance

Page 12

PRE Heuristic vs. Planning with FPO

O A-PRE B Best-heuristic O Heuristic-8 O P-PRE

Performance Improvement %

i

gzip

vpr mcf parser vortex bzip2 twolf geomean

Performance Improvement %

LICM Heuristic vs. Planning with FPO

10

OA-LICM B Best-heuristic OHeuristic-8 OP-LICM
gzip vpr mcf parser vortex bzip2 twolf geomean

Page 13

Finding Good Optimization Orders

* Planning with genetic algorithms
— Adaptively changing optimization order is effective
— Search for “best” optimization sequence
— Score solutions by executing the resulting program
— Typically, only small programs are considered
— Almagor [LCTES 2004), Kulkarni [PLDI 2004]

» Using FPO to improve planning performance
— Use Almagor GA approach
— Score solutions with models, avoiding need to run program
— As good sequences (performance) as experimental scoring
— Faster compilation times
— Larger, more realistic programs

Experiments

Scalar optimizations

— Global value numbering (G), Constant propagation (C), Copy
propagation (O), Constant folding (N), PRE (P), LICM (L),
Register allocation (graph coloring) (R), dead code elimination (D)

» Fixed sequence: GOCDPOLOD [Whitfield97]
GA based on Almagor GA [LCTES 2004]

» 10 generations, 20 sequences per generation
— Initial sequence is fixed order sequence

— 10% best sequences survive each generation, remaining formed
by crossover operation and character-by-character with 5%
mutation rate

— Past sequence results are hashed to avoid re-evaluating
— Optimization orders determined on module level

Page 14

Run-Time Performance

—|EI Fixed B Experimental BFPO I

20
MiBench MediaBench SPEC2K
15 H :
c
[0]
£
g
o
8 10
£
R
5 -
0 - -
bitcnt dijkstra FFT :adpcm mpeg gzip mcf parser bzip2
Compile-Time
46.1 55.6
45 T—|m Experimental B FPO [
40 , :
MiBench i MediaBench SPEC2K
35 : :
» 30
3
<25
[0}
£
‘5 20
=
5§15
(@)
10
5
. . — ,

bitcnt dijkstra FFT éadpcm mpegé gzip mcf parser bzip2

Page 15

CoCo Architecture

Estimation Machine Program
Models Models Models

Checker

Continuous

2852 552 | state ¢
B 2= -

oN®= T o= -«

cC = 173 [73

%égg_ "%gg -t w./ Monitor

S§Ee SEL |-— _ Plans Dy namic
= Conductor [—#= Optimizerand

Opt. SDT
-
'7 V@/ #
Monitor

Application Planner »|Debugger A/' \
\
/ StaticOptimizer ;@

Static Conpiler Dynamic Conpiler

Checker

CoCo Run-Time System

+ Based on Software Dynamic
Translation

Application Binary

Dynamic Translator » Layer of software between application
0S binary and the OS/CPU.

+ Application’s instructions are

CPU examined and modified before being
executed on the CPU.

* Uses include binary translation,
dynamic optimization, & others

Page 16

CoCo Run-Time System

DynamicTranslator| ° Strata SDT toolkit [CGO’O3]
Capture . L. . .
— Application’s instructions are examined

and modified before being executed.

Ne
— Reconfigurable & retargetable
— Low overhead translation

Fetch

Decode

» Provides functionality for run-time
Translate translation & optimization
NextPC — Multithreading & interrupt handling
— Memory management
OperatingSystem — Translated code caching

cPU — Code analysis

Context
Switch

Targets: MIPS/Irix, SPARC/Solaris, x86/Linux, MIPS/PS2, PPC/MacOS
Apps: Embedded SW [DATE’04], self management [WOSS’04], arch. simulation

Overhead Reduction in Strata

* Improve run-time performance of translated code,
without applying code optimizations

« Efficient execution in fragment cache [CGO’03,I1JPP]

— Fragment linking, partial call inlining, fast returns, indirect branch
translation caching, instruction trace formation

— SPARC: 22.9x (no transformations) to 1.3x (with transformations)
— x86: 1.3x, Dynamo/RIO [Bruening CGO’03]: 1.2x

* Program instrumentation [ICSE’'05,W0OSS’04,Traces’03]
— Reduce amount of instrumentation inserted
— Reduce the cost of an individual piece of instrumentation code
— 1.26x-2.63x speedup over no optimization for several profilers

Page 17

Debugging Dynamically
Translated Code

» Source-level debugging — current debuggers
won’t work on dynamically translated programs!

* New challenges
— Dynamic code generation and duplication
— Branch trampolines
— Overhead reduction techniques
— Post-mortem debugging

» Approach
— Dynamic debug mappings

— Generate mappings based on code translations and use
the mappings to map translated code back to source level

TDB: A Debugger for SDT

Provides source-level transparency
Hides all dynamic code translations
Handles basic translations & overhead reductions

1
Generate & Read Mappings to
Update Mappings Mapping Map Addresses
4>| —
| Table |
Strata | | DB

SDT

| Record Active
Breakpoints

e
|

| Interception |
L _Layer _

Read Breakpoints |

Breakpoint
¢ Table

Page 18

Related Work

 Effective optimization

— Adaptive optimizing compilers with genetic algorithm searches
[Cooper02,Almagor04 & KulkarniO4]

— lterative compilation [Knijnenburg03]
— Optimization space exploration (OSE) [Triantafyllis03]
— Analytic models [Wolf91, Sarkar97, McKinley96, Hu02]

+ Software dynamic translation
— Dynamo/RIO, Dynamo, Mojo, Vulcan, Walkabout, DELI

Summary

* A new planning-based approach to compilation
called Continuous Compilation (CoCo)

* Apply whole suite of optimizations with constant
refinement of optimizations and plans for them

* Results
— Highly accurate predictions for simple loop optimizations
— Highly accurate predictions for scalar optimizations
— Low overhead run-time system based on SDT
— INS-OP reduces instrumentation cost
— TDB debugger for dynamically translated code

Page 19

Collaborators

Many students have participated, including:

* FPO: Min Zhao (Pitt)
* Program instrumentation: Naveen Kumar (Pitt)
« Strata: Kevin Scott (UVA/Google) and Naveen Kumar

* Overhead reduction: Kevin Scott, Naveen Kumair,
Jason Mars (Pitt)

* Debugging: Naveen Kumar

Faculty: Mary Lou Soffa & Jack Davidson (UVA)

More Information

)
*ilcurre

Continuous Compilation

childers@cs.pitt.edu

http://www.cs.pitt.edu/coco

Page 20

