
1

Jazz: A Tool for Demand-
Driven Structural Testing
Bruce Childers (childers@cs.pitt.edu)

Jon Misurda, James A. Clause, Juliya L. Reed
Department of Computer Science
University of Pittsburgh
Pittsburgh, Pennsylvania 15260 USA

Mary Lou Soffa
Department of Computer Science
University of Virginia
Charlottesville, Virginia 22904 USA

Structural Software Testing

Assure quality, robust software
Collect coverage information about the program

Coverage types
Node coverage determines basic blocks executed
Branch coverage determines edges executed
Def-use coverage determines pairs of variable
definitions and uses that are executed

Over multiple inputs until coverage criteria

Current Tools and Approaches

E.g., JCover, PurifyPlus
Use static program instrumentation

Injected prior to program execution
E.g., instrument basic blocks with “hit counter” to
indicate when a block is executed

Limitations
Not scalable: Instrumentation remains in program
Inflexible: Only certain tests, languages, platforms

2

Our Approach

A scalable & flexible framework
Automatically apply multiple test strategies
Multiple languages and platforms
Handle large programs

Demand-driven structural testing [ICSE’05]
Specification driven: User written test
Test plans: Recipe of how & where to test
Path specific: Instrument only what is needed
Dynamic: Insert & remove instrumentation

Jazz – A Framework Instance

Structural testing for Java programs
Branch, node, def-use coverage
User-written specification, demand-driven testing,
result reports

Implementation
Eclipse 3.01 plug-in: Test specification & reporting
Jikes RVM: Demand-driven testing
Works on all programs runnable by Jikes
x86/Linux

Jazz Demo

Branch coverage of music player
Test region is whole program (JOrbis)
Test input is a song

Compared
Traditional approach with static instrumentation
Demand-driven approach with dynamic
instrumentation

Traditional Approach Demand-driven Approach

3

Jazz Demo

Branch coverage of music player
Test region is whole program (JOrbis)
Test input is a song

Compared
Traditional approach with static instrumentation
Demand-driven approach with dynamic
instrumentation

Traditional Approach Demand-driven Approach

Jazz Demo

Branch coverage of music player
Test region is whole program (JOrbis)
Test input is a song

Compared
Traditional approach with static instrumentation
Demand-driven approach with dynamic
instrumentation

Traditional Approach Demand-driven Approach

Jazz Tool Flow

Jikes
RVM

Application Test Spec.

Test Plan

Dynamic
Instrumenter

Node
Branch
Def-Use

Planner APIs

Test Planner

JVM

Eclipse Plug-in

4

Test Specification

1a

1b

3

2

Specify the regions to test
1a. Highlight line regions
1b. Select classes and methods

List of desired tests

Click to create a test

4 Click to run test suite

Test Planner

Test plan: Where and how to test program
Test storage, probe location table,
instrumentation payload
Combine payloads to create custom strategies

Application

Test
Planner

Test
Specification

Test Instrumentation
Payload

Test Plan

Global Storage & Probe Location Table

Dynamic Instrumentation

Test plan targets an instrumentation API

FIST instrumentation engine [WOSS’04]
Retargetable & reconfigurable
Dynamic insertion & removal of instrumentation
Binary level instrumentation (post JIT)

Uses fast breakpoints [Kessler]: Replace
existing instruction with a jump to
instrumentation

5

Test Results

1 Results

Branch Coverage Example

Record which edges are executed
Determine (source, sink) edge pairs hit at run-time
Source is a branch
Sink can be taken & not-taken target of branch

Within a test region, dynamically instrument
along path of execution

Insert instrumentation at edge sink blocks
Remove instrumentation at edge source as soon
as branch covered

public class simpleDemo {
public static void main(String[] args) {

int evenSum = 0;
int oddSum = 0;

for(int i = 0; i < 100; i++) {
if(i%2==0) {

evenSum += i;
}
else {

oddSum += i;
}

}
System.out.println("The sum of the even numbers from 0 to 100 is: " + evenSum);
System.out.println("The sum of the odd numbers from 0 to 100 is: " + oddSum);

}
}

Branch Coverage Example

DEFINITIONS {
NAME: method_main, REGION_D,
LOCATION: FILE simpleDemo.java {

CLASS simpleDemo, METHOD main
}

}
BODY {

DO BRANCH_TEST ON REGION method_main UNTIL: 100%
}

Example program: simpleDemo.java

Use Jazz GUI to determine test specification: simpleDemo.testspec

Coverage 100%

6

Branch Coverage Example

Probe Loc Tab Storage
Block Next Covered
1 2,3
2 4
3 4
4 1

Test Payload
Mark edge hit
Insert at next point
Remove instrumentation

1

2 3

4
Instrumentation

Hit

N, N

N

N

N

Y, Y

Y

Y

Y

Experiments

Traditional vs. Jazz (in same implementation)
Compared coverage and run-time

SPECjvm98 benchmarks
unloaded 2.4 Ghz Pentium IV, 1GB of memory
RedHat Linux 7.3

Coverage – same reported by both tools
Branch coverage: 38.9-58%
Node coverage: 75-90.6%
Def-use coverage: 66.9-90.5%

Run-time Performance

Static Branch
Dynamic Branch

Static Node Static Def-Use
Dynamic Node Dynamic Def-Use

7

Summary

A new tool (Jazz) for structural testing
Implements demand-driven approach
Test specification in Eclipse IDE
Test planner & dynamic instrumentation in Jikes

Very low overhead
E.g., branch coverage tool is 3-4x faster than
traditional approaches

For Further Information…

childers@cs.pitt.edu

http://www.cs.pitt.edu/coco

