Jazz: A Tool for Demand-
‘ Driven Structural Testing

Bruce Childers (childers@cs.pitt.edu)

Jon Misurda, James A. Clause, Juliya L. Reed
Department of Computer Science
& University of Pittsburgh
=== Pittsburgh, Pennsylvania 15260 USA

Mary Lou Soffa

Department of Computer Science
University of Virginia
Charlottesville, Virginia 22904 USA

' Structural Software Testing

= Assure quality, robust software
o Collect coverage information about the program

= Coverage types
o Node coverage determines basic blocks executed
o Branch coverage determines edges executed

o Def-use coverage determines pairs of variable
definitions and uses that are executed

= Over multiple inputs until coverage criteria

| Current Tools and Approaches

= E.g., JCover, PurifyPlus
= Use static program instrumentation
o Injected prior to program execution

o E.g., instrument basic blocks with “hit counter” to
indicate when a block is executed

= Limitations
o Not scalable: Instrumentation remains in program
o Inflexible: Only certain tests, languages, platforms

Our Approach

= A scalable & flexible framework
o Automatically apply multiple test strategies
o Multiple languages and platforms
o Handle large programs

= Demand-driven structural testing [ICSE’05]
o Specification driven: User written test
o Test plans: Recipe of how & where to test
o Path specific: Instrument only what is needed
o Dynamic: Insert & remove instrumentation

\ Jazz — A Framework Instance

= Structural testing for Java programs
o Branch, node, def-use coverage

o User-written specification, demand-driven testing,
result reports

= Implementation
o Eclipse 3.01 plug-in: Test specification & reporting
o Jikes RVM: Demand-driven testing
o Works on all programs runnable by Jikes
o x86/Linux

\ Jazz Demo

= Branch coverage of music player
o Test region is whole program (JOrbis)
o Testinput is a song
= Compared
o Traditional approach with static instrumentation
o Demand-driven approach with dynamic
instrumentation

4 4

Traditional Approach Demand-driven Approach

’ Jazz Demo

= Branch coverage of music player
o Test region is whole program (JOrbis)
o Testinput is a song
= Compared
o Traditional approach with static instrumentation
o Demand-driven approach with dynamic

instrumentation
4 4
Traditional Approach Demand-driven Approach
' Jazz Demo

= Branch coverage of music player
o Test region is whole program (JOrbis)
o Testinput is a song
= Compared
o Traditional approach with static instrumentation
o Demand-driven approach with dynamic

instrumentation
4 d
Traditional Approach Demand-driven Approach

' Jazz Tool Flow

Eclipse Plug-in

.

Test Specification

- ———— "=t Fu¥]|
. ieaiu wes (2) | Click to create a test -
(4). Click to run test suite 1

Specify the regions to test
1a. Highlight line regions
1b. Select classes and methods

(3) | List of desired tests

’ Test Planner

Test Plan

Global Storage & Probe Location Table

Test

Specification
||ﬂ.)
Test Instrumentation

Payload

= Test plan: Where and how to test program

= Test storage, probe location table,
instrumentation payload

= Combine payloads to create custom strategies

| Dynamic Instrumentation

= Test plan targets an instrumentation API

= FIST instrumentation engine [WOSS’04]
o Retargetable & reconfigurable
o Dynamic insertion & removal of instrumentation
o Binary level instrumentation (post JIT)

= Uses fast breakpoints [Kessler]: Replace
existing instruction with a jump to
instrumentation

’ Test Results

emerhim sa | r 1
Oy
& & = -
= - _ fT=m——,
s - T —

O ot

'Branch Coverage Example

= Record which edges are executed
o Determine (source, sink) edge pairs hit at run-time
o Source is a branch
o Sink can be taken & not-taken target of branch

= Within a test region, dynamically instrument
along path of execution
o Insert instrumentation at edge sink blocks

o Remove instrumentation at edge source as soon
as branch covered

| Branch Coverage Example

Example program: sit java
public class si {
public static void main(string[] args) {
int evensum - 0;
int oddsum = 0;

for(int i -i?z‘_:zla;n; i) { Coverage 100%
evensum += i;
b
else {

}

oddsum += i;

system.out.printin("The sum of the even numbers from 0 to 100 is: " + evensum);
system.out.printin("The sum of the odd numbers from 0 to 100 is: " + oddsum);

¥
}
Use Jazz GUl to ine test ificati impleDe testspec
DEFINITIONS {

NAME: method_main, REGION_D,
LOCATION: FILE simpleDemo.java {
CLASS simpleDemo, METHOD main

{
DO BRANCH_TEST ON REGION method_main UNTIL: 100%

'Branch Coverage Example

Probe Loc Tab Storage -

Block Next Covered
1 2,3 N, M
4 N

2
o Lo
4 1 N

Test Payload

Mark edge hit
Insert at next point -
Remove instrumentation [Instrumentation
Il Hit
4

| Experiments

Traditional vs. Jazz (in same implementation)
o Compared coverage and run-time

SPECjvm98 benchmarks
o unloaded 2.4 Ghz Pentium IV, 1GB of memory
o RedHat Linux 7.3

= Coverage — same reported by both tools
o Branch coverage: 38.9-58%
o Node coverage: 75-90.6%
o Def-use coverage: 66.9-90.5%

’ Run-time Performance

B static Node M staticBranch E Static Def-Use
Dynamic Node B Dynamic Branch B Dynamic Def-Use

’Summary

= A new tool (Jazz) for structural testing
o Implements demand-driven approach
o Test specification in Eclipse IDE
o Test planner & dynamic instrumentation in Jikes

= Very low overhead

o E.g., branch coverage tool is 3-4x faster than
traditional approaches

’ For Further Information...

childers@cs.pitt.edu

http://www.cs.pitt.edu/coco

