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Introduction

■ Energy is a first class resource

■ Dynamic Voltage scaling (DVS) in 
processors
■ Reduce processor’s voltage and frequency 

linearly to reduce energy quadratically.
■ DVS is in widespread use today

� Mainstream processors have DVS
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Multiple Clock Domains Chips

� Trend: Large chips 
� Problem 

� Hard to synchronize

� Solution: 
� Multiple clock domains (MCD):

Globally Asynchronous, Locally 
synchronous (GALS) [DAC’99]

■ MCD chips:
■ Each domain has separate clock 

and power supply
■ Allow finer granularity of power 

control

IBM Power 5

IFU: Instruction Fetch Unit, ISU: Instruction 
issue unit, IDU: instruction decode unit,    
LSU: Load Store Unit, FPU: Floating point Unit
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Related work

DVS in MCD chips 

� Offline:
� Profile based [Magklis et al.- ISCA’03]

� Insertion of reconfiguration instructions into applications

� Online:
� Attack-Decay [Semeraro et al. - MICRO’02]

� Vary domain’s voltage according to domain’s workload 

� Formal solution [Wu et al. - ASPLOS’04]
� Model each domain as queuing system, and solve 

� Adaptive [Wu et al. - HPCA’05]
� Self-tuned reaction times adaptive to workload changes
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Problem

� Set the voltage and frequency for each domain 
to reduce the Combined energy consumption 
with little impact on delay

� Previous solutions:

Online DVS policies in each domain based on 
local workloads of each domain  

� Our solution:

Online Integrated Dynamic Voltage Scaling in 
CPU-core and L2 cache.
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Online DVS : Basic Idea

� Set the frequency of a 
domain based workload
� speed α workload

� Workload measured by 
performance counters
� # instruction for CPU-core
� L2 access for L2-cache 

� Control loop!
� periodically measure 

workload to set speed
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Positive Feedback Intervals
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Integrated DVS policy

Consider two domain chips
CPU-core and L2 cache

VCVC

L2 Domain

CPU Domain

L1
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FUs
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Processor Chip

VC: Voltage Controller
set configuration using 
global info (observed 
activity) � configure using 
DVS

Main memory



www.cs.pitt.edu/PARTS9

Online-IDVS Policy

� Rules for setting 
voltages

� Break positive 
feedback 

� in rules 1 & 5
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Positive feedback scenarios:

Workloads increase in both domains

� Indicate a start of memory bound program phase

� Preemptively reduce core speed 

� avoid overloading  L2 cache domain with excess traffic. 

� Increasing core speed will exacerbate load in both 

domains. 

� Decrease core speed rather than keeping it 

unchanged to save core energy

� likely longer core stalls due to expected higher L2  traffic. 

Rule # IPC L2 access Vc V$

1 ⇑ ⇑ ⇓ ⇑
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Positive feedback scenarios:

Workloads decrease in both domains

� Decrease in IPC is not due to higher L2 traffic.

� Longer core stalls are a result of local core activity

� Increasing or decreasing the core speed may not 
eliminate the source of these stalls. 

� Change core speed risk unnecessarily increasing  
execution time or energy consumption. 

� Maintain the core speed unchanged

� break the positive feedback scenario without hurting 
delay or energy.

Rule # IPC L2 access Vc V$

5 ⇓ ⇓ - ⇓
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Experimental Results

� Setup: 
� Simulator: Simplescalar with MCD extension

� Models: 
� two domains (CPU, L2)

� five domains (Fetch U, Int. U, FP U, Reorder buffer and L2)
� Fetch + L2 are correlated, other are independent.

� Simple and high performance processors

� Compare against: 
� no-power management and

� Isolated DVS in each domain [Semeraro et al.’03]  

� Metric: energy-delay product
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Simulation Configuration

Simple embedded (Config. A) and High performance (Config. B) processors 
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Online-IDVS improves E.D up to 26% over no-DVS and up to 12% over 
isolated DVS policy.
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Policy Variations
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Resolving positive feedback loops using P0 is most effective. 
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Sensitivity Analysis

Varying number of domains and Processor Configurations
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Online-IDVS is more effective (higher E.D improvement) in high performance proc.

Relative improvement over isolated DVS is higher in simple core with two domains.
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IDVS for multiple domains

■ It is hard to reason about the interaction 
between more than two domains.

■ Hence, designing correlated policies for more 
than two domains is not intuitive

■ Statistical Machine Learning techniques can  
discover the correlation and generate IDVS 
policies
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An off-line solution: 

Machine learning based IDVS 

Training phase

Runtime

Learning
engine

determine freq. 

& voltages

Integrated 
DVS policy

Auto. policy 
generator
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An off-line solution:  

ML-IDVS : Offline learning 
■ Divide training programs into “code sections”

■ Simulate the execution of a large number of code sections for all 
combination of frequencies.

■ Characterize each “code section” by a parameter tuple (CPI, L2PI, MPI, 
execution frequencies)

■ Record the best operating frequency for each class of “code sections”
(best WRT some metric – ex. ED). 

fcpu=1, f$=1

fcpu=1, f$=0.5

fcpu=0.5, f$=1

fcpu=0.5, f$=0.5

<4, 0.05,0.001, 1,1>

<3.5, 0.05, 0.004, 1, 0.5>

<2.5, 0.05, 0.0003, 0.5, 1>

<2.4, 0.05, 0.001, 0.5, 0.5>

min E.D
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An off-line solution:  

ML-IDVS : Offline learning 
■ Store the best frequencies for each class of “code sections” a table

■ At run-time, use monitors to classify the current code section and 
use the table to setup the frequencies of the next section.

■ May apply ML learning to translate the “very large” table into a small 
number of rules.

State Table indexed by
<fCPU, fL2, CPI, L2PI, MPI>
Stores best frequency combinations

Machine learning to generate policy rules

If (L2PI >0.32) and (CPI<2) then fL2= 1GHz

else fL2 = 0.5GHz

If (MPI >0.002) and (CPI<3) then fcpu = 0.5GHz 

else fcpu = 1GHz
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ML-IDVS v.s. Online-IDVS

ML-IDVS Online-IDVS

E.D improvement
Higher - due to offline 
profiling

For more domains
Time-consuming rule 
generation

Less intuitive domain 
interactions

Diverse set of 
applications in system

higher training overhead Same policy

Optimizations
Work with multiple 
objectives
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Conclusion 

� Using existing hardware, we can increase the energy 
saving by considering the interaction between domains 
when applying DVS policies in systems with MCD

� Integrated DVS is more effective in simple cores.

� When the number of domains increases, we need a 
more systematic way to discover the interaction 
between the domains

� Can be applied to Chip multiprocessors


