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Introduction

= Energy is a first class resource

= Dynamic Voltage scaling (DVS) in

processors
s Reduce processor’'s voltage and frequency
linearly to reduce energy quadratically.

s DVS is in widespread use today
+ Mainstream processors have DVS
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Multiple Clock Domains Chips

IBM Power 5

= Trend: Large chips
= Problem

Hard to synchronize
Solution:

Multiple clock domains (MCD):

Globally Asynchronous, Locally
synchronous (GALS) [DAC’99]

= MCD chips:
s Each domain has separate clock
and power supply
m Allow finer granularity of power

control
IFU: Instruction Fetch Unit, ISU: Instruction
issue unit, IDU: instruction decode unit,
LSU: Load Store Unit, FPU: Floating point Unit
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Related work

DVS in MCD chips

n Offline:
Profile based [Magklis et al.- ISCA'03]

= Insertion of reconfiguration instructions into applications
= Online:
Attack-Decay [Semeraro et al. - MICRO'02]

= Vary domain’s voltage according to domain’s workload

Formal solution [Wu et al. - ASPLOS'04]
= Model each domain as queuing system, and solve

Adaptive [Wu et al. - HPCA'05]
= Self-tuned reaction times adaptive to workload changes
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Problem

= Set the voltage and frequency for each domain
to reduce the Combined energy consumption
with little impact on delay

= Previous solutions:

Online DVS policies in each domain based on
local workloads of each domain

= Our solution:

Online Integrated Dynamic Voltage Scaling in
CPU-core and L2 cache.
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Online DVS : Basic Idea

= Set the frequency of a
domain based workload Voltage

controller
speed o workload

= Workload measured by

performance counters 2
# instruction for CPU-core 3 /"\\_, \
L2 access for L2-cache S / /"
=
= Control loop! time
periodically measure
workload to set speed W
8
O
>

time
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Positive Feedback Intervals

CPU Domain
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Consider two domain chips
CPU-core and L2 cache

VC: Voltage Controller
set configuration using
global info (observed
activity) = configure using
DVS
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Integrated DVS policy

Processor Chip

CPU Domain

FUs

L2 Domain

L2 cache

Main memory
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= Rules for setting
voltages

= Break positive
feedback

inrules 1 & 5
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Online-IDVS Policy

Event to Action by
ule monitor proposed plcy
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Positive feedback scenarios:
Workloads /ncrease in both domains

Rule # IPC L2 access V. Vi
1 i i U i

= Indicate a start of memory bound program phase

= Preemptively reduce core speed
avoid overloading L2 cache domain with excess traffic.

= Increasing core speed will exacerbate load in both
domains.
= Decrease core speed rather than keeping it
unchanged to save core energy
likely longer core stalls due to expected higher L2 traffic.
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Positive feedback scenarios:
Workloads decrease in both domains

Rule # IPC L2 access Vv V,
5 U U - U

= Decrease in IPC is not due to higher L2 traffic.

= Longer core stalls are a result of local core activity

Increasing or decreasing the core speed may not
eliminate the source of these stalls.

Change core speed risk unnecessarily increasing
execution time or energy consumption.
= Maintain the core speed unchanged

break the positive feedback scenario without hurting
delay or energy.
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Experimental Results

= Setup:
Simulator: Simplescalar with MCD extension

Models:
=« two domains (CPU, L2)
= five domains (Fetch U, Int. U, FP U, Reorder buffer and L2)

Fetch + L2 are correlated, other are independent.
= Simple and high performance processors

Compare against:
= NO-power management and
= Isolated DVS in each domain [Semeraro et al.’03]

Metric: energy-delay product
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W

Simulation Configuration

Simple embedded (Config. A) and High performance (Config. B) processors

Parameter Config A Config B
Dec./Iss. Width 1/1 4/6
dL1 cache 64KB, 2-way | 64KB, 2-way
L1 cache 64KB, 2-way | 64KB, 2-way
L2 Cache IMB DM IMB DM
L1 lat. 2 cycles 2 cycles
L2 lat. 12 cycles 12 cycles
Int ALUs 241 mult/div | 441 mult/div
FP ALUs 141 mult/div | 2+1 mult/div
INT Issue Queue 4 entries 20 entries
FP Issue Queue 4 entries 15 entries
LS Queue 8 64
Reorder Buffer 40 80
13
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Results

Normalized to no-DVS policy
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Online-IDVS improves E.D up to 26% over no-DVS and up to 12% over
isolated DVS policy.
Department of Computer Science 14 www.cs.pitt.edu/PARTS

UNIVERSITY OF PITTSBURGH



Policy Variations
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Resolving positive feedback loops using PO is most effective.
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Sensitivity Analysis

Varying number of domains and Processor Configurations
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Simple core (Config A) High performance (Config B)
Online-IDVS is more effective (higher E.D improvement) in high performance proc.

Relative improvement over isolated DVS is higher in simple core with two domains.
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IDVS for multiple domains

s It is hard to reason about the interaction
between more than two domains.

s Hence, designing correlated policies for more
than two domains is not intuitive

» Statistical Machine Learning techniques can
discover the correlation and generate IDVS
policies
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An off-line solution:

Machine learning based IDVS
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An off-line solution:

ML-IDVS : Offline learning

= Divide training programs into “code sections”

= Simulate the execution of a large number of code sections for all
combination of frequencies.

= Characterize each “code section” by a parameter tuple (CPI, L2PI, MPI,
execution frequencies)

= Record the best operating frequency for each class of “code sections”

(best WRT some metric — ex. ED).

min E.D
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An off-line solution:

ML-IDVS : Offline learning

= Store the best frequencies for each class of “code sections” a table

= At run-time, use monitors to classify the current code section and
use the table to setup the frequencies of the next section.

= May apply ML learning to translate the “very large” table into a small
number of rules.

State Table indexed by
<frpy 1,5, CPL L2PI, MPI>
Stores best frequency combinations

Machine learning to generate policy rules

If (L2PI >0.32) and (CPI<2) then /= 1GHz
|:> else 7, = 0.5GHz

If (MPI >0.002) and (CPI<3) then £, = 0.5GHz
else £, = 1GHz

cpu
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ML-IDVS v.s. Online-IDVS

ML-IDVS Online-IDVS

Higher - due to offline

E.D improvement

profiling
: Time-consuming rule Less intuitive domain
For more domains : ) .
generation interactions

Diverse set of

applications in system higher training overhead | Same policy

Work with multiple

Optimizations objectives
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Conclusion

= Using existing hardware, we can increase the energy
saving by considering the interaction between domains
when applying DVS policies in systems with MCD

= Integrated DVS is more effective in simple cores.

= When the number of domains increases, we need a
more systematic way to discover the interaction
between the domains

= Can be applied to Chip multiprocessors
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