
Integrated CPU and Cache Power
Management in Multiple Clock
Domain Processors

Nevine AbouGhazaleh, Bruce Childers, Daniel Mossé &
Rami Melhem

Department of Computer Science
University of Pittsburgh

HiPEAC 2008: International Conference on High Performance Embedded Architectures & Compilers

www.cs.pitt.edu/PARTS2

Introduction

■ Energy is a first class resource

■ Dynamic Voltage scaling (DVS) in
processors
■ Reduce processor’s voltage and frequency

linearly to reduce energy quadratically.
■ DVS is in widespread use today

� Mainstream processors have DVS

www.cs.pitt.edu/PARTS3

Multiple Clock Domains Chips

� Trend: Large chips
� Problem

� Hard to synchronize

� Solution:
� Multiple clock domains (MCD):

Globally Asynchronous, Locally
synchronous (GALS) [DAC’99]

■ MCD chips:
■ Each domain has separate clock

and power supply
■ Allow finer granularity of power

control

IBM Power 5

IFU: Instruction Fetch Unit, ISU: Instruction
issue unit, IDU: instruction decode unit,
LSU: Load Store Unit, FPU: Floating point Unit

www.cs.pitt.edu/PARTS4

Related work

DVS in MCD chips

� Offline:
� Profile based [Magklis et al.- ISCA’03]

� Insertion of reconfiguration instructions into applications

� Online:
� Attack-Decay [Semeraro et al. - MICRO’02]

� Vary domain’s voltage according to domain’s workload

� Formal solution [Wu et al. - ASPLOS’04]
� Model each domain as queuing system, and solve

� Adaptive [Wu et al. - HPCA’05]
� Self-tuned reaction times adaptive to workload changes

www.cs.pitt.edu/PARTS5

Problem

� Set the voltage and frequency for each domain
to reduce the Combined energy consumption
with little impact on delay

� Previous solutions:

Online DVS policies in each domain based on
local workloads of each domain

� Our solution:

Online Integrated Dynamic Voltage Scaling in
CPU-core and L2 cache.

www.cs.pitt.edu/PARTS6

Online DVS : Basic Idea

� Set the frequency of a
domain based workload
� speed α workload

� Workload measured by
performance counters
� # instruction for CPU-core
� L2 access for L2-cache

� Control loop!
� periodically measure

workload to set speed
W
o
rk
lo
a
d

V
o
lt
a
g
e

Domain

time

Workload

Voltage
setting

Voltage
controller

time

www.cs.pitt.edu/PARTS7

Positive Feedback Intervals

C
a
ch
e
 f
re
q

intervals

C
P
U
 w
o
rk
lo
a
d

intervals

L2
 w
o
rk
lo
a
d

intervals

C
P
U
 f
re
q

intervals

More stalls Fewer L2
accesses

Slower
inst. fetch

higher
L2 lat.

More stalls

C
P
U
 D
o
m
a
in

L
2
 D
o
m
a
in

Freq. of
positive
feedbacks

www.cs.pitt.edu/PARTS8

Integrated DVS policy

Consider two domain chips
CPU-core and L2 cache

VCVC

L2 Domain

CPU Domain

L1
 c
a
ch
e

FUs

L2 cache

Processor Chip

VC: Voltage Controller
set configuration using
global info (observed
activity) � configure using
DVS

Main memory

www.cs.pitt.edu/PARTS9

Online-IDVS Policy

� Rules for setting
voltages

� Break positive
feedback

� in rules 1 & 5

www.cs.pitt.edu/PARTS10

Positive feedback scenarios:

Workloads increase in both domains

� Indicate a start of memory bound program phase

� Preemptively reduce core speed

� avoid overloading L2 cache domain with excess traffic.

� Increasing core speed will exacerbate load in both

domains.

� Decrease core speed rather than keeping it

unchanged to save core energy

� likely longer core stalls due to expected higher L2 traffic.

Rule # IPC L2 access Vc V$

1 ⇑ ⇑ ⇓ ⇑

www.cs.pitt.edu/PARTS11

Positive feedback scenarios:

Workloads decrease in both domains

� Decrease in IPC is not due to higher L2 traffic.

� Longer core stalls are a result of local core activity

� Increasing or decreasing the core speed may not
eliminate the source of these stalls.

� Change core speed risk unnecessarily increasing
execution time or energy consumption.

� Maintain the core speed unchanged

� break the positive feedback scenario without hurting
delay or energy.

Rule # IPC L2 access Vc V$

5 ⇓ ⇓ - ⇓

www.cs.pitt.edu/PARTS12

Experimental Results

� Setup:
� Simulator: Simplescalar with MCD extension

� Models:
� two domains (CPU, L2)

� five domains (Fetch U, Int. U, FP U, Reorder buffer and L2)
� Fetch + L2 are correlated, other are independent.

� Simple and high performance processors

� Compare against:
� no-power management and

� Isolated DVS in each domain [Semeraro et al.’03]

� Metric: energy-delay product

www.cs.pitt.edu/PARTS13

Simulation Configuration

Simple embedded (Config. A) and High performance (Config. B) processors

www.cs.pitt.edu/PARTS14

0%

5%

10%

15%

20%

25%

30%

a
d
p
c
m

_
d
e
c

a
d
p
c
m

_
e
n
c

b
a
s
ic

m
a
th

c
rc

3
2

g
s
m

_
to

a
s
t

g
s
m

_
u
n
to

a
s
t

la
m

e

rs
y
n
th

a
v
g

b
z
ip

e
q
u
a
k
e

g
c
c

g
z
ip

p
a
rs

e
r

tw
o
lf

v
o
rt

e
x

v
p
r

a
v
g

E
n

e
rg

y
-d

e
la

y
 p

ro
d

u
c

t
Im

p
ro

v
e

m
e

n
t Isolated DVS

Online-IDVS

Spec2000Mibench

Results

b
e
tt
e
r

Normalized to no-DVS policy

Online-IDVS improves E.D up to 26% over no-DVS and up to 12% over
isolated DVS policy.

www.cs.pitt.edu/PARTS15

Policy Variations

0.88

0.92

0.96

1

1.04

1.08

P0 P1 P2 P3 P4 P5 P6 P7

Policy variations

b
e
tt
e
r

Resolving positive feedback loops using P0 is most effective.

www.cs.pitt.edu/PARTS16

Sensitivity Analysis

Varying number of domains and Processor Configurations

0%

5%

10%

15%

20%

25%

30%

Mibench SPEC'00 Mibench SPEC'00 Mibench SPEC'00 Mibench SPEC'00

2dmn 5dmn 2dmn 5dmn

Simple core (Config A) High performance (Config B)

E
.D
 i
m
p
r
o
v
e
m
e
n
t

Isolated DVS

Online-IDVS

b
e
tt
e
r

Online-IDVS is more effective (higher E.D improvement) in high performance proc.

Relative improvement over isolated DVS is higher in simple core with two domains.

www.cs.pitt.edu/PARTS17

IDVS for multiple domains

■ It is hard to reason about the interaction
between more than two domains.

■ Hence, designing correlated policies for more
than two domains is not intuitive

■ Statistical Machine Learning techniques can
discover the correlation and generate IDVS
policies

www.cs.pitt.edu/PARTS18

An off-line solution:

Machine learning based IDVS

Training phase

Runtime

Learning
engine

determine freq.

& voltages

Integrated
DVS policy

Auto. policy
generator

www.cs.pitt.edu/PARTS19

An off-line solution:

ML-IDVS : Offline learning
■ Divide training programs into “code sections”

■ Simulate the execution of a large number of code sections for all
combination of frequencies.

■ Characterize each “code section” by a parameter tuple (CPI, L2PI, MPI,
execution frequencies)

■ Record the best operating frequency for each class of “code sections”
(best WRT some metric – ex. ED).

fcpu=1, f$=1

fcpu=1, f$=0.5

fcpu=0.5, f$=1

fcpu=0.5, f$=0.5

<4, 0.05,0.001, 1,1>

<3.5, 0.05, 0.004, 1, 0.5>

<2.5, 0.05, 0.0003, 0.5, 1>

<2.4, 0.05, 0.001, 0.5, 0.5>

min E.D

www.cs.pitt.edu/PARTS20

An off-line solution:

ML-IDVS : Offline learning
■ Store the best frequencies for each class of “code sections” a table

■ At run-time, use monitors to classify the current code section and
use the table to setup the frequencies of the next section.

■ May apply ML learning to translate the “very large” table into a small
number of rules.

State Table indexed by
<fCPU, fL2, CPI, L2PI, MPI>
Stores best frequency combinations

Machine learning to generate policy rules

If (L2PI >0.32) and (CPI<2) then fL2= 1GHz

else fL2 = 0.5GHz

If (MPI >0.002) and (CPI<3) then fcpu = 0.5GHz

else fcpu = 1GHz

www.cs.pitt.edu/PARTS21

ML-IDVS v.s. Online-IDVS

ML-IDVS Online-IDVS

E.D improvement
Higher - due to offline
profiling

For more domains
Time-consuming rule
generation

Less intuitive domain
interactions

Diverse set of
applications in system

higher training overhead Same policy

Optimizations
Work with multiple
objectives

www.cs.pitt.edu/PARTS22

Conclusion

� Using existing hardware, we can increase the energy
saving by considering the interaction between domains
when applying DVS policies in systems with MCD

� Integrated DVS is more effective in simple cores.

� When the number of domains increases, we need a
more systematic way to discover the interaction
between the domains

� Can be applied to Chip multiprocessors

