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2Department of Computer Science – University of Pittsburgh
Sennott Square – Pittsburgh, PA 15260 – USA

{lbertini,julius}@ic.uff.br, mosse@cs.pitt.edu

Abstract. The design of energy-efficient computing systems involves seeking any
slack that the system can offer. With real-time modeling, one avenue is to design
the system’s resource management to control the quality of service (QoS) at the
lowest level that still meets the real-time specification, avoiding overprovisioning
of the system, and thus saving energy. To achieve QoS control, we obtain dynam-
ically a QoS metric and then actuate in the speed of the servernodes capable of
dynamic voltage scaling(DVS). Because clusters are often heterogeneous, using
different DVS settings in each server produces better energy savings. In this paper
we investigate local nodes adjusting their DVS settings based on a global off-line
optimization, achieving extra power reduction up to10%. Our testbed is a Web
cluster composed only of commodity servers, and the workload is from a stan-
dardized e-commerce application modeled with real-time properties, the TPC-W.

1. Introduction

E-commerce has completely conquered its position in the worldwide economy, with a va-
riety of different applications, such as e-sourcing and business-to-business applications.
Some companies achieve outstanding success relying only onthe Internet, and some purely
Internet companies outperform well established rivals whoare based only on the old model.
Because of this success, the complexity of these applications increase everytime, and also
increases the complexity of the systems to host them. On the other hand, the search for
more energy-efficient architectures is a research area motivated by relevant issues such as
system’s cost of ownership, system dependability, and environmental issues.

This paper focuses on energy-efficient e-commerce architectures based on multi-
tiered server clusters with optimized power management, and also controlled provisioning
of the system. Two ways to save energy in a computing system have been well studied.
The first one is to use optimization techniques so that the same performance is obtained
with less power consumption. The second way is to model the application with real-time
characteristics and reduce the performance while still meeting the real-time specification.
Both are important in seeking slacks toward energy savings.There are also two ways of
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implementing DVS. One is to make a localized DVS in each server that will increase or
decrease its speed according to the load it receives. The second class, to which our method
belongs, is to have a coordinated DVS. The coordinator sets the DVS operating point and
then the amount of work for each server is defined by a request distribution mechanism.

We show the implementation of a web server cluster with a standardized e-
commerce application defined with real-time characteristics. Applying QoS control to
maintain the QoS in the minimum level dictated by the real-time specification, the sys-
tem can operate without overprovisioning, and of course this reduces the consumed power.
Furthermore, we also apply global optimization in the QoS control process where each
server adjusts locally its DVS operating point, to achieve better energy consumption while
providing the same QoS. Our architecture uses a QoS control implemented using tradi-
tional control theory, which uses dynamic voltage scaling (DVS) as actuators in the system
performance to regulate the QoS to the specified level. As a contribution, we show the
implementation of the global Single to Multiple Output Optimization (SMOO) that can
generate optimized multiple different DVS outputs out of a single controller output, and
doing so, the simple and well known single input and single output (SISO) controller can
be used.

2. Background

We will describe briefly the environment used as testbed for e-commerce applications.

2.1. Cluster Model

The cluster architecture is shown in Figure 1. It is composedof the front-end server, the ap-
plication layer to process dynamic and static requests, andthe distributed database that will
store the e-commerce data. The front-end implements a request distribution policy based
on the load of second-tier servers, and based on the overload, if any, of these servers. The
front-end server redirects requests to the application servers, directs the server’s response
to the clients, and is capable of SSL encryption/decryptionas required for the e-commerce
application.
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Figure 1. Cluster architecture

For simplicity, the load distribution among the database servers is done statically.
We replicate the web store in many independent database servers, avoiding bottlenecks, and
dividing equally the total load to each database. To implement the architecture of Figure 1
we used the Apache web server with the modulebackhand[Schlossnagle 2000] for load
balancing, a new Apache module to implement the QoS controller, PHP scripting language
for the dynamic pages, and PostgreSQL for the databases. Thee-commerce application



is the TPC-W, an industry standard benchmark modeled with real-time characteristics (see
Section 2.2). Figure 1 also depicts the QoS control logic implemented at the front-end (see
Section 2.3), implemented in a new Apache module that is alsoresponsible for measuring
the end-to-end time delay of each web interaction.

2.2. Workload Generation

TPC-W is a transactional web benchmark [Daniel F. Garcia 2003] that defines a full e-
commerce environment. The workload is generated by Emulated Browsers (EB) that run
on the local network, outside the cluster. Each EB is a threadimplemented in Java that
accesses the web server through HTTP and HTTPS connections,emulating a real customer
performing browsing, searching and purchases. TPC-W specifies14 different interactions
necessary to simulate the activity of a book store, and each interaction has a different dead-
line. With QoS defined as the ratio deadlines met to the total serviced interactions, the
standard specifies a QoS level of0.9 for all interactions. Figure 2b shows a table with the
standard defined deadlines.
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Figure 2. TPC-W features. (a) characterization of one web interaction. (b) deadlines
per web interaction type, in seconds

In order to perform QoS control, the front-end must be able tomeasure the time
of one web interaction (theWeb Interaction Response Time- WIRT). This measure is not
trivial because of the definition of a web interaction given by TPC-W. Figure 2a shows
the events involved in one web interaction. Upon the arrivalof a PHP request, the request
is proxied to an application layer server that will access the database. After the database
response, the dynamic page is built up and an HTML response page with embedded objects
(e.g., images) is sent to the client. The client will then issue the requests for all embedded
objects, and they may be distributed to any of the application servers. The subsequent
objects will be serviced with a certain level of parallelism, and the time must be measured
from the arrival of the PHP request to the time the last embedded object is sent to the client.
To make this measurement we implemented in the Apache QoS control module a labeling
technique that can mark to what dynamic request belongs every static request, so that the
front-end can wait for the sequence of static requests for the time measurement.

2.3. Statistical Inference and QoS Control Logic

We use the Tardiness Quantile Metric defined in [Bertini et al. 2007b]. The main idea is to
measure the tardiness, defined as the ratio of web interaction response time to the deadline,
and keep thep-quantile of this random variable in1.0, value that means a web interaction
finished its execution by the deadline. Doing so, a fractionp of web interactions will meet
the deadlines, resulting in a statistical QoS guarantee. This mechanism allows us to specify
QoS with very fine granularity.



To estimate thep-quantile, we will make assumptions on the workload probability
distribution. It has been shown [Crovella and Bestavros 1996] that Web traffic response
time can be modeled using heavy-tailed probability densityfunctions, specially the Pareto
distribution. Based on this suggestion, we adopted the Pareto distribution to model the tardi-
ness variable, and we have shown in [Bertini et al. 2007b] some statistical tests of goodness
of fit, such as the Kolmogorov-Smirnov test and Quantile-Quantile plots. The tests showed
very good fit specially at the tail, the region of more interest to quantify the QoS. The result
is an expression relating the average tardiness with thep-quantile. Furthermore, to make
this expression more conservative, we used the confidence interval measured in each sam-
ple interval. For example, if the average tardiness measured with its confidence interval is
0.30 ± 0.05, it will be assumed0.35 rather than0.30. With a confidence level of95%, this
gives the confidence of97.5% that the mean will lay below the setpoint value.

The front-end has a PIDF controller (see block diagram in Figure 1), that is, a
Proportional-Integral-Derivative(PID) controller augmented with a lowpass filter (F) in
the derivative part. In industrial plants the filter is needed to reject the noise present in
the sensing process. In a e-commerce web cluster the controlvariable is stochastic, it
presents randomness variations that are very similar to noise. We give more details in
[Bertini et al. 2007a].

The actuator of the control system is based on dynamic voltage scaling (DVS).
The controller broadcast a frequency factor and coordinatethe DVS of the application
servers. Our DVS scheme consists in switching between the two discrete values, as pro-
posed in [Ishihara and Yasuura 1998], adjacent to the desired continuous value represented
by the controller output frequency factor. The controller is single output, it broadcasts the
frequency scaling factorr and each server nodei in the application layer calculates the de-
sired frequencyfi given byfi = ri(F

i
max − F i

min) + F i
min. The valueri will be obtained

from r by the SMOO method. Then each server calculates its duty cycle αi for the DVS
mechanism that will determine the fraction of the period to stay in the highest available
discrete frequency smaller thanfi, denoted by||fi||

+, and the fraction of time to stay in the
lowest available discrete frequency bigger thanfi, denoted by||fi||

−. More details in next
section.

3. Problem Statement and Solution

Although it is believed that MIMO controllers (Multiple Input Multiple Output) are neces-
sary when multiple control objectives exist [Diao et al. 2006], we adopted the simple model
of a SISO controller (Single Input Single Output). Our model becomes possible because we
control the variable tardiness, which aggregates all14 web interaction response times in
only one measure. Further, the DVS output can be also normalized between0.0 and1.0
and each server node calculates its desired frequency as explained in Section 2.3. In this
section we will show how to calculate a different frequency factorri for each server nodei
in order to reduce the energy consumption related to the baseline, in which all servers use
the sameri = r frequency factor. We have already shown in [Bertini et al. 2007b] that the
coordinated DVS scheme withri = r, and an appropriate load balance, is better than other
schemes that use local interval based DVS schemes as in [Rusuet al. 2006]. The SMOO
problem is defined by the question: having heterogeneous processors, what is the combina-
tion of frequency scaling factorsri, that will achieve the same performance as ifri = r, but
will minimize the total power? We can formalize this as the following:



Minimize

P =
N
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N
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(
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N
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{
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(
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−

)
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(
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+

)}

≥ Hbase

wherefi is the desired frequency in the continuous range betweenF i
min, the minimum

frequency of serveri, and F i
max, the maximum frequency of serveri, given by fi =

ri(F
i
max − F i

min) + F i
min, andαi is the solution toαi||fi||

− + (1 − αi)||fi||
+ = fi. In

the restriction part,Hbase is the baseline performance, that is, withri = r, given by
Hbase =

∑N
i=1 {H

i
min + r (H i

max − H i
min)}, with H i

min andH i
max being the performances

obtained atF i
min andF i

max respectively, for each serveri. This uses the assumption that the
performance varies linearly with the frequency in one server, and the collected data showed
this does happen (see in Table 1 that the Req/s performance isroughly linear with the fre-
quency). The functionsP i

busy (·) andHi (·) return values from Table 1, and the presented
values were measured using thehttperfbenchmark [Mosberger and Jin 1998]. The problem
then consists in finding a set of valuesR = {r1, r2, . . . , rN} so that the power is minimized
and the performance is the same as in the caseri = r.

Table 1. Power and performance characteristics of each server node.
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Server 2: silver−athlon
CPU: AMD Athlon 64 3400+

Server 5: blue−athlon
CPU: AMD Athlon 64 3000+

Server 4: green−athlon
CPU: AMD Athlon 64 3000+

Server 3: black−athlon
CPU: AMD Athlon 64 3000+

Server 1: pentium−m
CPU: Intel Pentium M 1.8 GHz
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We solved the SMOO problem for5 servers usingexhaustive search. Once con-
structed, the table is stored at each server node and after receiving the broadcast valuer,
each serveri look up its valueri, in O(1) time. We built the table dividing the range[0, 1]
with bins of 0.03 and plotted the curves in Figure 3a. The bottom chart shows the the-
oretical power saving that the optimization process will achieve, based on the power and
performance measures shown in Table 1. This optimization also reveals the most efficient
machines, and it can be used to define a dynamic power on/off policy for servers, but this
subject is beyond the scope of this paper.

4. Experimental Results

We will show the efficacy of the optimization by two experiments. First we will validate in
practice the theoretical plot shown in Figure 3a, and secondly we will show that the Web



cluster can guarantee the same QoS but with reduced power consumption. The practical
reproduction of Figure 3a (bottom) is being shown in Figure 3b. The experiment consisted
of varying the DVS outputr from 0.0 to 1.0 in 0.05 steps, staying in each step for30s.
Each server was running a CPU intensive process so that the utilization is 100%. The
daemon that switches the frequency had a period of500ms. The switching overhead is
negligible. In [Rusu et al. 2006] the frequency is changed ina10ms basis without noticed
overhead. We measured the power with a data acquisition board that monitors current and
voltage in AC for all application layer servers. Each point is the average for 60 cycles
of instantaneous current× voltage, that is, one second. The plot is very similar to the
theoretical, although the the power savings showed to be at most10%, rather than6.5% as
shown in Figure 3a. This may be explained by differences in power values from Table 1
compared to the experiment, that used a different application.
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Figure 3. (a) Theoretical optimization result. (b) Power consumption applying the
optimization phase with 100% utilization.

The second experiment was done with400 EBs (a number that resulted in a DVS
output in the middle of the range). With a confidence intervalof 95%, the average power in
both cases were:355.94 ± 0.36, and338.81 ± 0.36, what gives an average saving of4.8%
over the base case (see Figure 4b), and the same QoS for both cases (see Figure 4a). Two
QoS measures are being shown, the windowed QoS average, which used a window of10s,
and the total accumulated QoS during the execution. The former has a bigger confidence
interval, because the size of the sample is smaller, and the latter shows a more precise value.
As the plot shows, in both cases it is above the QoS setpoint of0.95. In Figure 4b there
is a reduction in the savings neart = 250s. This is due to the randomness intrinsic to this
system. A second run, even with the same parameters, will never be the same. However,
the consistency of the power saving is clearly being shown bythe experiment.

5. Related Work

The coordinated DVS scheme (CVS) was first used in [Elnozahy et al. 2002]. They com-
pared an independent DVS, where each server node decides locally its frequency value,
against CVS. The performance of CVS was shown to be better, but the with increased com-
plexity for implementation that could not justify its use. In our case, besides being slightly
better, its use was imposed by the use of a centralized controller.
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Figure 4. Optimization results. (a) QoS measured with and without optimization.
(b) Power consumption in each cases and the percentage power saving.

The method of using off-line optimization to build a table for on-line look up also
appear in [Xu et al. 2005], where a technique called LAOVS (Load-Aware On-off with in-
dependent Voltage Scale) was proposed, but there the intention of the optimization table
was to determine the number of active nodes, in a on/off dynamic mechanism. They used
local interval based DVS for changing the processors speed.

Applying queuing theory to model multi-tiered web architectures [Lien et al. 2004,
Liu et al. 2005, Urgaonkar et al. 2005] is another possibility to compute and control the
QoS probabilistically. We have shown in a previous work [Guerra et al. 2006] that it is
possible to choose the system settings so that the power is minimized, and the average
response time, given by queuing theory, is such that a predefined amount of deadlines is met.
However, it is difficult to have a good queuing model for a reale-commerce environment
that allows for a simple analytical formulation of the response time without having many
non realistic assumptions about the workload generation and service times. The approach
we use in this work is based on a real e-commerce scenario.

Use of control theory in large web systems is a trend. [Diao etal. 2006] gives a
classification of the control problems for large systems, using e-commerce as an example.
[Kephart and Chess 2003] suggests that autonomic systems will rely on control theory to
achieve desired performance objectives. These works motivated ours. Control and power
optimization is typically based on CPU utilization. In [Sharma et al. 2003] the authors
provide QoS awareness with a feedback loop and DVS, but the goal is to guarantee high
QoS levels, in a conservative way, not to control QoS at a fine-grain level.

6. Conclusion

In this paper we showed the implementation of a global optimization technique that con-
vert a single DVS output to multiple DVS outputs (SMOO – Single to Multiple Output
Optimization), applied to an e-commerce web server clusterwith QoS control. The QoS
controller adopts statistical inference to quantify the QoS indirectly, using the tardiness of
web interactions related to its deadlines. To simplify the implementation, our controller
has one single output. We obtain different outputs for each server in the cluster using the
SMOO that is run off-line. The same QoS was obtained with power reduction of up to10%
when compared to an already power-minimized system, and it comes with no QoS penalty.
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