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Abstract. The design of energy-efficient computing systems invobedsrgy any
slack that the system can offer. With real-time modeling, arenue is to design
the system’s resource management to control the qualitgrvice (Qo0S) at the
lowest level that still meets the real-time specificatiorgiding overprovisioning
of the system, and thus saving energy. To achieve QoS coméralbtain dynam-
ically a QoS metric and then actuate in the speed of the serwdes capable of
dynamic voltage scalinPVS). Because clusters are often heterogeneous, using
different DVS settings in each server produces better grsagings. In this paper
we investigate local nodes adjusting their DVS settingetam a global off-line
optimization, achieving extra power reduction uplti9. Our testbed is a Web
cluster composed only of commodity servers, and the watkidrom a stan-
dardized e-commerce application modeled with real-tingpprties, the TPC-W.

1. Introduction

E-commerce has completely conquered its position in thédwide economy, with a va-
riety of different applications, such as e-sourcing andrmss-to-business applications.
Some companies achieve outstanding success relying ohednternet, and some purely
Internet companies outperform well established rivals esgdbased only on the old model.
Because of this success, the complexity of these applitaticrease everytime, and also
increases the complexity of the systems to host them. Onttier band, the search for
more energy-efficient architectures is a research areavatedi by relevant issues such as
system'’s cost of ownership, system dependability, andenmental issues.

This paper focuses on energy-efficient e-commerce arthrescbased on multi-
tiered server clusters with optimized power managemeidtadso controlled provisioning
of the system. Two ways to save energy in a computing system been well studied.
The first one is to use optimization techniques so that theegaenformance is obtained
with less power consumption. The second way is to model tpécgpion with real-time
characteristics and reduce the performance while stilltimgehe real-time specification.
Both are important in seeking slacks toward energy saviigere are also two ways of
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implementing DVS. One is to make a localized DVS in each gethat will increase or
decrease its speed according to the load it receives. Thadetass, to which our method
belongs, is to have a coordinated DVS. The coordinator bet®VS operating point and
then the amount of work for each server is defined by a requssitdition mechanism.

We show the implementation of a web server cluster with adstatized e-
commerce application defined with real-time charactessti Applying QoS control to
maintain the QoS in the minimum level dictated by the remletispecification, the sys-
tem can operate without overprovisioning, and of courserédluces the consumed power.
Furthermore, we also apply global optimization in the Qo8t@ process where each
server adjusts locally its DVS operating point, to achiegttdy energy consumption while
providing the same QoS. Our architecture uses a QoS comtemented using tradi-
tional control theory, which uses dynamic voltage scaliDy$) as actuators in the system
performance to regulate the QoS to the specified level. Asné&ribation, we show the
implementation of the global Single to Multiple Output Opization (SMOO) that can
generate optimized multiple different DVS outputs out ofiregke controller output, and
doing so, the simple and well known single input and singlgpou(SISO) controller can
be used.

2. Background
We will describe briefly the environment used as testbed-fmramerce applications.

2.1. Cluster Model

The cluster architecture is shown in Figure 1. It is compasgele front-end server, the ap-
plication layer to process dynamic and static requeststtandistributed database that will
store the e-commerce data. The front-end implements a sedigtribution policy based
on the load of second-tier servers, and based on the overfaay, of these servers. The
front-end server redirects requests to the applicatiovesgr directs the server’s response
to the clients, and is capable of SSL encryption/decrypi®nequired for the e-commerce
application.
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Figure 1. Cluster architecture

For simplicity, the load distribution among the databas®ess is done statically.
We replicate the web store in many independent databaserseavoiding bottlenecks, and
dividing equally the total load to each database. To implartiee architecture of Figure 1
we used the Apache web server with the mochdekhandSchlossnagle 2000] for load
balancing, a new Apache module to implement the QoS coatr&®HP scripting language
for the dynamic pages, and PostgreSQL for the databasese-€hmmerce application



is the TPC-W, an industry standard benchmark modeled wihtim@e characteristics (see
Section 2.2). Figure 1 also depicts the QoS control logidemgnted at the front-end (see
Section 2.3), implemented in a new Apache module that isralspponsible for measuring
the end-to-end time delay of each web interaction.

2.2. Workload Generation

TPC-W is a transactional web benchmark [Daniel F. Garcie8R@ldat defines a full e-
commerce environment. The workload is generated by EntiBtewsers (EB) that run
on the local network, outside the cluster. Each EB is a thiregdemented in Java that
accesses the web server through HTTP and HTTPS connecationating a real customer
performing browsing, searching and purchases. TPC-W fgeti different interactions
necessary to simulate the activity of a book store, and edekhaiction has a different dead-
line. With QoS defined as the ratio deadlines met to the t@wrliced interactions, the
standard specifies a QoS level®$ for all interactions. Figure 2b shows a table with the
standard defined deadlines.
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Figure 2. TPC-W features. (a) characterization of one web interaction. (b) deadlines
per web interaction type, in seconds

In order to perform QoS control, the front-end must be ablenegasure the time
of one web interaction (thé/eb Interaction Response Tim&VIRT). This measure is not
trivial because of the definition of a web interaction givenTPC-W. Figure 2a shows
the events involved in one web interaction. Upon the arafa PHP request, the request
is proxied to an application layer server that will accessdhtabase. After the database
response, the dynamic page is built up and an HTML resporge\with embedded objects
(e.g., images) is sent to the client. The client will themuesthe requests for all embedded
objects, and they may be distributed to any of the applioaservers. The subsequent
objects will be serviced with a certain level of parallelisand the time must be measured
from the arrival of the PHP request to the time the last embéddbject is sent to the client.
To make this measurement we implemented in the Apache Qagtardule a labeling
technique that can mark to what dynamic request belongy static request, so that the
front-end can wait for the sequence of static requests #otithe measurement.

2.3. Statistical Inference and QoS Control Logic

We use the Tardiness Quantile Metric defined in [Bertini e28D7b]. The main idea is to
measure the tardiness, defined as the ratio of web intenaetsponse time to the deadline,
and keep th@-quantile of this random variable in0, value that means a web interaction
finished its execution by the deadline. Doing so, a fractiaf web interactions will meet
the deadlines, resulting in a statistical QoS guaranteis. fibchanism allows us to specify
QoS with very fine granularity.



To estimate the-quantile, we will make assumptions on the workload proligbil
distribution. It has been shown [Crovella and Bestavro®] #9at Web traffic response
time can be modeled using heavy-tailed probability derfsitgtions, specially the Pareto
distribution. Based on this suggestion, we adopted the@digtribution to model the tardi-
ness variable, and we have shown in [Bertini et al. 2007bjesstatistical tests of goodness
of fit, such as the Kolmogorov-Smirnov test and Quantile1@ueplots. The tests showed
very good fit specially at the tail, the region of more intétegjuantify the QoS. The result
Is an expression relating the average tardiness witlpieantile. Furthermore, to make
this expression more conservative, we used the confidetewah measured in each sam-
ple interval. For example, if the average tardiness medswith its confidence interval is
0.30 + 0.05, it will be assumed).35 rather thard.30. With a confidence level df5%, this
gives the confidence f7.5% that the mean will lay below the setpoint value.

The front-end has a PIDF controller (see block diagram irufggl), that is, a
Proportional-Integral-DerivativgPID) controller augmented with a lowpass filter (F) in
the derivative part. In industrial plants the filter is neg¢de reject the noise present in
the sensing process. In a e-commerce web cluster the coatriable is stochastic, it
presents randomness variations that are very similar teenoiWe give more details in
[Bertini et al. 2007a].

The actuator of the control system is based on dynamic welsagling (DVS).

The controller broadcast a frequency factor and coorditte#eDVS of the application
servers. Our DVS scheme consists in switching between thaliscrete values, as pro-
posed in [Ishihara and Yasuura 1998], adjacent to the dksowetinuous value represented
by the controller output frequency factor. The controlesingle output, it broadcasts the
frequency scaling factor and each server noden the application layer calculates the de-
sired frequencyf; given by f; = r;(F",. — F'..) + Fi,.. The valuer; will be obtained
from r by the SMOO method. Then each server calculates its dutg eydor the DVS
mechanism that will determine the fraction of the periodteyysn the highest available
discrete frequency smaller thgp denoted by| ;|| ™, and the fraction of time to stay in the
lowest available discrete frequency bigger tifardenoted by|f;||~. More details in next
section.

3. Problem Statement and Solution

Although it is believed that MIMO controllersVultiple Input Multiple Outputare neces-
sary when multiple control objectives exist [Diao et al. @))@ve adopted the simple model
of a SISO controller@ingle Input Single OutputOur model becomes possible because we
control the variable tardiness, which aggregated &lveb interaction response times in
only one measure. Further, the DVS output can be also naretabetweeri).0 and 1.0

and each server node calculates its desired frequency &sreegin Section 2.3. In this
section we will show how to calculate a different frequenragtbrr; for each server node

in order to reduce the energy consumption related to thdibase which all servers use
the same-; = r frequency factor. We have already shown in [Bertini et aDZ4§] that the
coordinated DVS scheme with = r, and an appropriate load balance, is better than other
schemes that use local interval based DVS schemes as in fRatW2006]. The SMOO
problem is defined by the question: having heterogeneoupsors, what is the combina-
tion of frequency scaling factors, that will achieve the same performance as i r, but

will minimize the total power? We can formalize this as thikdeing:



Minimize
P=YFR=3 {0iPhg, (1£117) + (1 = i) B, (I1£:117)
subject to:
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where f; is the desired frequency in the continuous range betwéen, the minimum
frequency of servei, and F' ., the maximum frequency of server given by f; =
ri(F .. — Fi.)+ Fi. . andq; is the solution too;||fi||~ + (1 — ay)||fil|T = fi- In
the restriction part,H;... iS the baseline performance, that is, with = r, given by
Hypoo = S {H? . +7 (H! . — H .}, with H . and H! ,_ being the performances

obtained at! . andF! respectively, for each serverThis uses the assumption that the

performance varies linearly with the frequency in one seaed the collected data showed
this does happen (see in Table 1 that the Req/s performangegkly linear with the fre-
quency). The function®,., (-) and H; (-) return values from Table 1, and the presented
values were measured using titgperfbenchmark [Mosberger and Jin 1998]. The problem
then consists in finding a set of valuBs= {r{, 7, ..., 7y} S0 that the power is minimized

and the performance is the same as in the caser.

Table 1. Power and performance characteristics of each server node.

Server 1: pentium-m Server 3: black-athlon
CPU: Intel Pentium M 1.8 GHz CPU: AMD Athlon 64 3000+
Freq. (MHz) | Pyusy (W) | Piae (W) | hitperf (Req/s) Freq. (MHz) | Pyusy (W) | Piaie (W) | hitperf (Req/s)
600 44 42 226.3 1000 78 69 345.0
800 45 43 303.0 1800 101 73 599.5
1000 47 43 378.2 2000 112 76 660.2
142188 g? jg ggg; Server 4: green—athlon
’ CPU: AMD Athlon 64 3000+
1600 55 47 591.6 on
1800 60 49 675.3 Freq. (MHz)| Pyusy (W) | Piaie (W) | hitperf (Req/s)
1000 72 65 336.6
Server 2: silver—athlon 1800 105 75 583.5
CPU: AMD Athlon 64 3400+ 2000 124 84 658.4
Freq. (MHz)| Pousy (W) | P (W) | hitperf (Req/s) Server 5: blue—athlon
1000 77 68 3326 CPU: AMD Athlon 64 3000+
1800 89 70 5725 Freq. (MHz)| Pyusy (W) | Pigte (W) | httperf (Req/s)
2000 100 74 640.8 1000 73 64 329.2
2200 115 79 673.2 1800 108 74 584.2
2400 136 85 7443 2000 124 81 653.9

We solved the SMOO problem fér servers usingxhaustive searchOnce con-
structed, the table is stored at each server node and afwvireg the broadcast value
each servef look up its valuer;, in O(1) time. We built the table dividing the range, 1]
with bins of 0.03 and plotted the curves in Figure 3a. The bottom chart shoegré-
oretical power saving that the optimization process wiliiage, based on the power and
performance measures shown in Table 1. This optimizatiem r@veals the most efficient
machines, and it can be used to define a dynamic power on/laéfydor servers, but this
subject is beyond the scope of this paper.

4. Experimental Results

We will show the efficacy of the optimization by two experiner-irst we will validate in
practice the theoretical plot shown in Figure 3a, and segond will show that the Web



cluster can guarantee the same QoS but with reduced powsurmgtion. The practical
reproduction of Figure 3a (bottom) is being shown in Figuse Bhe experiment consisted
of varying the DVS output from 0.0 to 1.0 in 0.05 steps, staying in each step f&0s.
Each server was running a CPU intensive process so that ilfmtign is 100%. The
daemon that switches the frequency had a period06fns. The switching overhead is
negligible. In [Rusu et al. 2006] the frequency is changed ifims basis without noticed
overhead. We measured the power with a data acquisitiom ltbat monitors current and
voltage in AC for all application layer servers. Each posthe average for 60 cycles
of instantaneous current voltage, that is, one second. The plot is very similar to the
theoretical, although the the power savings showed to bebat 1%, rather thar.5% as
shown in Figure 3a. This may be explained by differences imngvovalues from Table 1
compared to the experiment, that used a different appdicati
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Figure 3. (a) Theoretical optimization result. (b) Power consumption applying the
optimization phase with 100% utilization.

The second experiment was done witl) EBs (a number that resulted in a DVS
output in the middle of the range). With a confidence inteof@>%, the average power in
both cases were355.94 + 0.36, and338.81 + 0.36, what gives an average savingx8%
over the base case (see Figure 4b), and the same QoS for Beth(sae Figure 4a). Two
QoS measures are being shown, the windowed QoS averagén wded a window 0f0s,
and the total accumulated QoS during the execution. Thedbhas a bigger confidence
interval, because the size of the sample is smaller, anattez shows a more precise value.
As the plot shows, in both cases it is above the QoS setpoi9d6f In Figure 4b there
is a reduction in the savings neae= 250s. This is due to the randomness intrinsic to this
system. A second run, even with the same parameters, wilri®eythe same. However,
the consistency of the power saving is clearly being showthbyexperiment.

5. Related Work

The coordinated DVS scheme (CVS) was first used in [Elnozéhy 002]. They com-
pared an independent DVS, where each server node deciddly libs frequency value,
against CVS. The performance of CVS was shown to be bettethéuwvith increased com-
plexity for implementation that could not justify its use. dur case, besides being slightly
better, its use was imposed by the use of a centralized dlamtro
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Figure 4. Optimization results. (a) QoS measured with and without optimization.
(b) Power consumption in each cases and the percentage power saving.

The method of using off-line optimization to build a table tm-line look up also
appear in [Xu et al. 2005], where a technique called LAOVSad-@\ware On-off with in-
dependent Voltage Scale) was proposed, but there the iomienit the optimization table
was to determine the number of active nodes, in a on/off dymamechanism. They used
local interval based DVS for changing the processors speed.

Applying queuing theory to model multi-tiered web architees [Lien et al. 2004,
Liu et al. 2005, Urgaonkar et al. 2005] is another possipiiit compute and control the
QoS probabilistically. We have shown in a previous work [@Baet al. 2006] that it is
possible to choose the system settings so that the powemisnined, and the average
response time, given by queuing theory, is such that a presteéimount of deadlines is met.
However, it is difficult to have a good queuing model for a readlommerce environment
that allows for a simple analytical formulation of the respe time without having many
non realistic assumptions about the workload generatidnsarvice times. The approach
we use in this work is based on a real e-commerce scenario.

Use of control theory in large web systems is a trend. [Dieal.€2006] gives a
classification of the control problems for large system@&agie-commerce as an example.
[Kephart and Chess 2003] suggests that autonomic systelinelyion control theory to
achieve desired performance objectives. These works atetiwours. Control and power
optimization is typically based on CPU utilization. In [She et al. 2003] the authors
provide QoS awareness with a feedback loop and DVS, but thkigido guarantee high
QoS levels, in a conservative way, not to control QoS at adnaén level.

6. Conclusion

In this paper we showed the implementation of a global o@tin technique that con-
vert a single DVS output to multiple DVS outputs (SMOO — Seagp Multiple Output

Optimization), applied to an e-commerce web server clustdr QoS control. The QoS
controller adopts statistical inference to quantify theSQudirectly, using the tardiness of
web interactions related to its deadlines. To simplify thgllementation, our controller
has one single output. We obtain different outputs for e@ehies in the cluster using the
SMOQO that is run off-line. The same QoS was obtained with poeguction of up td 0%

when compared to an already power-minimized system, amhies with no QoS penalty.
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