
Collaborative Operating System and

Compiler Power Management for

Real-Time Applications

Nevine AbouGhazaleh, Daniel Mossé, Bruce R. Childers, and Rami Melhem

Managing energy consumption has become vitally important to battery operated portable and em-
bedded systems. Dynamic voltage scaling (DVS) reduces the processor’s dynamic power consump-

tion quadratically at the expense of linearly decreasing the performance. When reducing energy
with DVS for real-time systems, one must consider the performance penalty to ensure that dead-

lines can be met. In this paper, we introduce a novel collaborative approach between the compiler
and the operating system (OS) to reduce energy consumption. We use the compiler to anno-

tate an application’s source code with path-dependent information called power management hints
(PMHs). This fine-grained information captures the temporal behavior of the application, which

varies by executing different paths. During program execution, the OS periodically changes the
processor’s frequency and voltage based on the temporal information provided by the PMHs. These

speed adaptation points are called power management points (PMPs). We evaluate our scheme
using three embedded applications: a video decoder, automatic target recognition and a sub-band

tuner. Our scheme shows an energy reduction of up to 57% over no power management and up

to 32% over a static power management scheme. We compare our scheme to other schemes that
solely utilize PMPs for power management, and show experimentally that our scheme achieves

more energy savings. We also analyze the advantages and disadvantages of our approach relative
to another compiler-directed scheme.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems; D.3.4 [Programming Languages]: Processors—Run-

time environments

General Terms: Algorithms, Management, Experimentation

Additional Key Words and Phrases: Real-Time, Dynamic Voltage Scaling, Power management,

collaborative OS and compiler

1. INTRODUCTION

The expanding demand for mobile and embedded systems technology requires an
equivalent improvement in processor performance, which causes an elevation in the
power consumption of these devices. Managing energy consumption, especially in
devices that are battery operated, increases the number of applications that can

Support for the Power Aware Real Time Systems (PARTS) group has been provided by DARPA
(contract # F33615-00C-1736), NSF (grants ANI-0087609, ACI-0121658, ANI-0125704, CNS-

0305198, and CNS-0203945), and IBM Faculty Partnership Award.
Parts of this work appeared in COLP’01, RTAS’03, and LCTES’03.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–31.

2 ·

run on the device and extends the device’s battery lifetime. With efficient power
management, an extension in mission duration and a decrease in both device weight
and total cost of manufacturing and operation can be achieved.

Many of the emerging real-time applications designed for battery-operated de-
vices, such as wireless communication as well as audio and video processing, tend
to consume a considerable amount of energy. A current research direction that has
proved its efficacy in real-time systems achieves a trade-off between energy and per-
formance using dynamic voltage scaling (DVS). In a DVS-equipped processor, such
as Transmeta’s Crusoe [Transmeta] and Intel’s XScale [XScale 2002] processors,
CPU voltage and frequency can be changed on-the-fly to accommodate a proces-
sor’s workload. DVS achieves low energy consumption by exploiting the quadratic
relationship between power and performance. That is, linearly decreasing perfor-
mance (CPU voltage and speed) reduces the CPU power quadratically. The goal
of DVS schemes is to satisfy the time constraints of a real-time application while
consuming the least amount of energy.

Dynamically changing the speed in real-time applications is categorized as inter-
task or intra-task voltage scaling [Kim et al. 2002]. Inter-task DVS schedules speed
changes at each task boundary, while intra-task DVS schedules speed changes within
a single task. In this paper, we introduce a novel collaborative compiler and oper-
ating system (OS) intra-task approach that uses fine-grained information about an
application’s execution time to reduce energy consumption. We use the compiler to
extract temporal information and annotate an application’s source code with power
management hints (PMH). PMHs capture the dynamic behavior of an application,
including variances in execution path and execution time. During program execu-
tion, the operating system (OS) periodically invokes an interrupt service routine
(ISR) that adapts the processor’s frequency and voltage based on the temporal in-
formation provided by the PMHs. These speed adaptation points are called power
management points (PMPs).

We extend the OS and the compiler to collaborate in implementing a DVS tech-
nique that uses the strength of each of them. The compiler instruments the program
to convey path-specific run-time information about the program’s progress to the
operating system. Through the periodicity of the ISR that executes PMPs, the OS
controls the number of speed changes during an application’s execution, which, in
turn, reduces or controls the overhead associated with the DVS technique.

We evaluate our technique on three time-sensitive applications: an MPEG-2 de-
coder [MSSG], automatic target recognition (ATR) [Mahalanobis et al. 1996], and
sub-band filter [Rickard et al. 2003]. Using models of two commercially available
processors with dynamic voltage scaling (Transmeta’s Crusoe and Intel’s XScale),
we show that our technique can achieve significant energy reduction of up to 57%
over no power management and up to 32% over static power management. We
further demonstrate that our scheme achieves less energy consumption than (1) a
scheme that uses a simple compiler placement of PMPs at each procedure call and
(2) a scheme similar to ours that uses only PMPs rather than the cheaper PMHs
combined with PMPs. We also compare the advantages and disadvantages of our
collaborative scheme against a purely compiler-directed scheme [Shin et al. 2001].

In the next section, we introduce the DVS and application models used in our

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

work. In Section 3 we describe the collaboration between the OS and the compiler,
detailing the different phases of the algorithm for managing power consumption.
Section 4 shows the necessary instrumentation for the implementation of the col-
laborative scheme in both the compiler and operating system. Evaluation of the
scheme is discussed in Section 5. Section 6 briefly describes related work followed
by Section 7 that concludes the paper.

2. REAL-TIME APPLICATION AND DVS MODELS

Application Model. A real-time application has a deadline, d, by which it
should finish execution. If there is a single application running in the (embedded)
system, then d represents the time allotted for execution of the application. When
there are several applications in the system, the allotted time d comes from CPU
reservations in real-time operating systems or from engineering real-time embed-
ded systems. Each application is characterized by its worst-case execution time
(WCET). If d > WCET (i.e., the allotted time exceeds the WCET), the time dif-
ference is known as static slack. During run-time, an application runs for an actual
execution time that is smaller than or equal to WCET. The difference between the
worst case and actual execution times is called dynamic slack, which usually comes
from data dependencies that cause program instances to execute different paths.

Since in a DVS system the time taken to execute a program instance varies with
the speed at which the processor is operating, the execution of an application is
expressed in cycles rather than time units. Thus, we can represent an application’s
duration by its worst case cycles (WCC), where WCET is the time spent executing
WCC at maximum frequency.

Energy Model. In this paper, we focus on reducing the processor’s energy
consumption. In CMOS circuits, power dissipation is composed of static and dy-
namic portions. Dynamic power is directly proportional to the square of the input
voltage: P α CV 2

ddf , where C is the switched capacitance, Vdd is the supply voltage,
and f is the operating frequency. Hence, reducing the voltage reduces the power
consumption quadratically. However, because the processor clock frequency is also
dependent on the input voltage, reducing Vdd causes a program to run slower. The
energy consumed by an application is E = P t, where t is the time taken to run an
application with an average power P . Thus, running a program with reduced Vdd

and frequency leads to energy savings. Static power dissipation is due to leakage in
transistors. In this work, static leakage is assumed to be constant throughout an
application’s execution.

Processor Model. Several commercially available processors have recently
included DVS capabilities to make trade-offs between performance and energy con-
sumption. We consider realistic processors with discrete voltages and frequencies.
Two examples are the Transmeta Crusoe TM5400 [Transmeta] and the Intel X-scale
[XScale 2002]. See Section 5 for details of their configuration (voltage, frequency,
etc). We refer to changing the voltage/frequency and speed changes interchange-
ably.

Overhead Model. When computing and changing CPU frequency and voltage,
two main sources of overhead may be encountered depending on the CPU archi-
tecture: (1) computing a new speed, and (2) setting the speed through a voltage

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·

transition in the processor’s DC-DC regulator (resulting in a processor frequency
change) and the clock generator. This speed-changing overhead has been measured
and ranges from 25µ sec to 150µ sec and consumes energy in the range of micro
joules (for example 4µ J in lparm) [Min et al. 2000; Pering et al. 2000]. We assume
that the time and the energy consumed for voltage setting are constants for all the
power level transitions, but the time and energy overhead of computing the speed
depends on the CPU operating frequency during such computation.

3. OS-COMPILER COLLABORATION

Considering the general form of any real-time application code, automatically de-
ciding on the proper location to invoke PMPs using intra-task DVS scheduling is
not trivial. One problem is how frequently one should change the speed. Ideally,
the more voltage scaling invocations, the more fine-grain control the application has
for exploiting dynamic slack, and reducing energy. However, in practice, the en-
ergy and time overhead associated with each speed adjustment can overshadow the
DVS energy savings. In past work [AbouGhazaleh et al. 2001], we studied a special
case in which we consider only sequential code. Our goal then was to determine
how many PMPs should be inserted in the code to minimize energy consumption
while taking into account the overhead of computing and setting a new speed. We
presented a theoretical solution that determines how far apart (in cycles) any two
PMPs should be placed; in other words, we computed the PMP invocation fre-
quency. Beyond that preliminary work (i.e., in real applications), the problem is
harder due to the presence of branches, loops and procedure calls that eliminate
the determinism of the executed path compared to sequential code. In this work,
we show how to deal with these program structures.

To control the number of speed changes during the execution of an application,
we use a collaborative compiler-OS technique. Figure 1 shows that our scheme
is divided into offline and run-time phases. Initially, some timing information is
collected about a program’s execution behavior. During the offline phases, this
information is used to compute how frequently PMPs are invoked. The number
of cycles between executions of two PMPs is called PMP-interval. This interval
controls the number of PMPs executed in an application, and therefore the over-
head. Next, the compiler inserts instrumentation code for the PMHs to compute
the worst-case remaining cycles, wcri, starting from the ith PMH location to the
end of the application. The value of wcri at these locations may vary dynamically
based on the executed path for each run. For example, the remaining cycles at a
PMH inside a procedure body is dependent on the path from which this procedure
is invoked. During run-time, a PMH computes and passes dynamic timing infor-
mation (i.e., wcri) to the OS in a predetermined memory location named WCR,
which holds the most recent value of the estimated worst case remaining cycles.
Periodically, a timer interrupt invokes the operating system to execute an ISR that
does the PMP job; that is, the ISR adjusts the processor speed based on the latest
WCR value and the remaining time to the deadline.

Figure 2 shows an example CFG and how PMHs and PMPs work together. A
PMP is periodically invoked (the large bars) to adjust processor’s speed based on
WCR. In the compiler, a PMH placement algorithm first divides an application

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

Collect Timing
Information of PMPs

Execution
& set WCR

PMH compute
code with hints

Application

of PMHs
Placement

Run−Time Execution

Compute PMP−
Interval Length

Offline PlacementTiming Extraction

Fig. 1. Phases of the collaborative power management scheme.

PMH

PMH

PMH

PMH

PMH
i+1

i−1

i−2

i+2

i

wcri−1

Elapsed cycles along
single execution path

WCR = wcri−3 i−3WCR = wcriWCR = wcri−2WCR = wcr

OS interrupt invoked
for executing PMPs

PMHs inserted by
the compiler

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
� wcri i+2wcr wcri+1wcri−2

Interrupt Interval

Fig. 2. PMH and PMP invocations (right) when executing the bold path in CFG (left).

code into segments such that the worst case execution cycles of each segment,
wcc, does not exceed the PMP-interval length (in cycles) and, second, inserts one
PMH (the short bars) after each segment. Each PMHi computes the worst case
remaining cycles (wcri) and stores it in WCR. A PMHi is guaranteed to execute
at some point before a PMP to update the WCR with the value of wcri based on
the path of execution. Because the actual execution cycles of each segment is less
than or equal wcc, we note that more than one PMH can be executed in a single
PMP-interval, which improves the estimation of WCR.

Our scheme uses the strengths of both the OS and the compiler to direct DVS
in contrast to an OS-only or compiler-only DVS scheme. Our scheme exploits the
compiler’s ability to extract run-time information about the application’s execution
progress indicated by wcri. The scheme also takes advantage of the OS’s ability to
schedule DVS events independent of which path is executed in the application. In a
solely OS-directed scheme, the OS is unaware of an application’s execution progress
and the number of remaining cycles, while a solely compiler-directed scheme can
not control how often PMPs will be called (due to the non-determinism of the
path followed during program execution) and thus there is no upper bound on the
overhead.

Although our description in this paper focuses on intra-task DVS, our technique
is also useful in sharing slack among multiple tasks. The advantage of our scheme is
that it can accurately account for the slack generated by a task instance. There are
two cases to consider for distributing the slack. First, if there is no preemption in the
system, at the end of each task execution, unused slack can be distributed among
subsequent tasks according to any of the slack sharing policies [Mossé et al. 2000].
Second, if the system allows for preemptive scheduling, when a preemption occurs,
the OS computes how much slack has been generated so far by the application. This

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·

��
��
��
��Basic Block Speed change

invocation
Prodecure body Region of

basic blocks

���
���
���
���

(a)

��
��
��
��

(b)

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

(c)

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

D

C

B

A

Z

Y

X

(d)

PMP PMP

{stmnts}

return

call B() Call C()
Main ()

A()

C()

B()

D()

{stmnts}

return

{stmnts}
PMP

return

call D()

return

{stmnts}

PMP

call A()

{stmnts}

(e)

{stmnts}
PMP
{stmnts}
PMP
return

X()

A

B C

D

call X()

call X()

call X()

(f)

Fig. 3. Some PMP placement strategies and their adverse cases of code structure (See
Table I for description).

is done through a PMP-like interrupt invoked at a context switch. This interrupt
computes slack based on the preemption time and the latest WCR value. Then,
the task scheduler can decide whether to share the newly generated slack with
other tasks or save it to be used when the same task instance resumes execution.
In this work, we follow the latter approach. Next, we show the advantage of our
collaborative scheme when compared with an offline scheme that inserts PMPs
in the code. We also describe a few different intra-task PMP placement schemes
and counterexamples where these schemes may inefficiently use dynamic and static
slack.

3.1 PMP versus PMH placement strategy

For a single application under consideration, a PMH inserted in the application’s
code can be more efficient (with respect to slack utilization) than placement of
PMPs directly in an application’s code based on information available offline. There
are two reasons for the possible inefficiency with inserting PMPs. First, an offline
decision may not account for all the run-time slack generated by an application,
and second, there is no control on the frequency of executing PMPs due to the

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

Case Placement
Strategy

Adverse case Side effect

(a) PMP placed at
each loop itera-

tion

Loop body (single iteration) consists
of one or few small sized basic blocks,

i.e., loop body size is in order of few
to hundreds of cycles)

Too frequent speed-change
invocations relative to the

slack that may be gener-
ated in system.

(b) A PMP placed

before the start
or after the termi-

nation of a loop
execution

An application consisting of single

main loop

Dynamic slack generated

from the loop can not be ex-
ploited.

(c) PMP placed at
each branch

Each branch is a basic block before it
branches again

Too frequent speed-change
invocations.

(d) Place PMP in

branches with
non worst case

(cycles) path

Path ABCD is a sequence of basic

blocks interleaved with PMPs. Re-
gions X,Y and Z are worst case paths

after blocks A,B, and C, respectively.

Too frequent speed-change

invocations.

(e) PMP placed at
each procedure

call

Frequent call to procedures of small
sizes

Too frequent speed-change
invocations.

(f) PMPs inserted in

procedures’ bod-
ies

Procedure X contains PMPs and is

called from different call-sites in the
application

Need a way to estimate the

worst case remaining cycles
inside procedure X to com-

pute a new speed

Table I. Adverse combinations of code structure for some PMP placement strategies.

uncertainty of which paths will be taken at run-time.
Scheduling the speed offline based on profile information can not use all the

generated slack. The actual execution time of an application is likely to differ from
its offline estimates. This difference contributes to the dynamic slack generated
in the system. Since a compiler-only intra-task DVS scheme makes speed change
decisions based solely on offline estimates, such scheme can not exploit all the
dynamic slack generated at run-time. In contrast, PMHs can convey run-time
knowledge about the application execution. Thus, during run-time a more informed
decision can be made based on the actual slack available at the time of the speed
transition. Further analysis of the slack utilization efficiency compared to other
offline schemes is discussed in Section 5.2.

The uncertainty in knowing the execution path at compile time causes some
offline placement strategies to act inefficiently for some combinations of code struc-
tures. This inefficiency may contribute to an increase in energy consumption rather
than energy savings; this can be due to the overhead associated with executing ex-
cessive PMPs or due to inefficient slack utilization from too few PMP invocations.
Figure 3 and Table I show different PMP placement strategies and some combina-
tions of code structures that show the inefficiency of those strategies to deal with
specific cases. Although some slack is exploited, the given examples show that there
is no guarantee that the overhead of changing the speed does not offset the total
energy savings. We evaluate this issue later in the paper.

The strength of our collaborative scheme lies in three properties. First, a separate
PMH placement algorithm can be devised to supply the OS with the necessary tim-
ing information about an application at a rate proportional to the PMP invocation.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·

Second, the actual speed-change is done seldom enough by the OS at pre-computed
time intervals (every PMP-interval) to keep the overhead low. The PMP-interval is
tailored to an application’s execution behavior in a way that guarantees minimum
energy consumption while meeting deadlines. Finally, by giving the OS control to
change speed, our scheme controls the number of executed PMPs independent of
any execution path.

The advantage of using a collaborative scheme that includes both PMHs and
PMPs over a scheme that uses only PMPs is that the application’s execution
progress can be known without actually doing a speed-change and incurring its
high overhead. For example, consider the case of a loop body that contains mainly
two exclusive branches (e.g., if-then-else statement), such that the wcc of the
first branch (then part) is much larger then the second one (else part). Consider
a scheme that utilizes PMPs alone (the locations of PMPs in the code are statically
determined), and places a PMP inside the loop body before the branches. This
scheme would hurt energy consumption if the smaller branch is executed more of-
ten than the large branch. This is because, with each loop iteration the scheme
pays the overhead of the speed-change independent of the branch/path visited.
However, using our scheme, by replacing the PMP in the loop with a PMH, we
reduce the overhead incurred in each iteration and the actual speed-change (PMP)
is scheduled after a “reasonable” amount of work, such that the potential energy
savings from DVS can justify the energy overhead of the PMP. Similar scenarios
occur in all program constructs that have variable execution times.

In the next section, we describe the dynamic speed setting schemes that we use
with our power management algorithm. This description is followed by a detailed
discussion of our compiler-OS scheme.

3.2 Dynamic Speed Setting

The OS views the application as a set of sequential segments; an execution segment
is a set of instruction between two consecutive PMHs. Each execution segment
has a worst case execution cycles, wcc. Speed changes are scheduled at the start
of these segments. In this work, we use two schemes, Proportional and Greedy –
first introduced in [Mossé et al. 2000]– to determine the processor speed. Although
we adapt these schemes to account for overheads, our approach can support other
schemes as well. Dynamic and static slack generated from past execution segments
are used for reducing the speed for future execution segments.

To guarantee the deadline, the total time overhead of computing and chang-
ing the speed is deducted from the remaining time before the deadline. The
overhead consists of the time for voltage setting, Tset, and the time for comput-
ing the speed, Tcomp. Tcomp depends on the CPU operating frequency, fcurr ,
during the computation of the speed. This time overhead considered at each
PMP is composed of changing the speed once for the current execution segment
(Tcomp(fcurr) + Tset) and once for potentially changing the speed after the next
execution segment1 (Tcomp(fnext) + Tset). The total time overhead is expressed as
Ttotal(fcurr , fnext) = Tcomp(fcurr)+Tcomp(fnext)+2Tset. We assume that Tset and

1We conservatively consider that speed might need to be raised to the maximum speed to guarantee

that deadlines are not violated.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

the corresponding energy, Eset, are constants for all the power level transitions.
The Proportional scheme. In this scheme, reclaimed slack is uniformly

distributed to all remaining execution segments proportional to their worst-case
execution times. Our main concern here is to compute the exact time left for the
application to execute before the deadline. The processor’s speed at the start of
an execution segment, fnext, is computed as follows: the work for the remaining
execution segments is stretched out based on the remaining time to the deadline
minus the time needed to switch the speed (d− ct−Ttotal, where ct is current time
at the beginning of the execution segment). Taking into consideration the overhead
of changing the speed, this scheme computes a new speed as:

fnext =
WCR

d− ct − Ttotal(fcurr , fnext)
(1)

The Greedy scheme. In this scheme all available slack is allocated to the
next execution segment. Similar to Proportional, we subtract the overhead from
the remaining time after accounting for the execution time of the remaining ex-
ecution segments (excluding the current one) running at fmax. Accounting for
overheads, the new speed is computed as follows:

fnext =
wcc

d− ct − WCR−wcc
fmax

− Ttotal(fcurr , fnext)
(2)

where fmax is the maximum frequency the processor can operate on.
Section 3.4.1 details the methodology for selecting the number of execution segments

and computing wcc for an application.

3.3 Timing Extraction

Before deciding on the locations of the PMHs in the code, prior timing knowledge
about an application is needed. We assume that the WCET (the worst-case ex-
ecution time) of applications is known or can be obtained (for example, through
profiling or software timing analysis2 [Vrchoticky 1994; Vivancos et al. 2001]). In
this work, we use profiling to obtain timing information. In case a program’s actual
execution time exceeds the worst case time determined from the training data, a
signal can be invoked to indicate the violation of a deadline.

For collecting timing information, we divide a program’s control flow graph
(CFG) into regions. Each region contains one or more adjacent basic blocks (BB).
Since the typical size of a basic block is small (tens of cycles) compared to the
typical size of a PMP-interval (hundreds of thousands of cycles), blocks can be
aggregated into a region to be profiled. Region formation has the key advantage of
reducing the number of traversed objects and the complexity of traversing the CFG
in later stages of our power management scheme. Region formation also avoids ag-
gregating too many basic blocks into a region such that the region execution at
run-time exceeds PMP-interval. Since some procedures called within a BB may
execute for relatively long periods, we avoid overgrowing a region by isolating each

2The usual trade-off applies: profiling cannot guarantee the deadlines of tasks, since it does not
derive the worst-case execution, while software analysis allows for that at the expense of lower

slack utilization.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·

��
��
��

��
��
��

(a)

��
��
��

��
��
��

(b)

��
��
��

��
��
��

procedure call

Region

Basic block with

Basic block

Fig. 4. Examples on region segmentation for (a) branches and (b) loops, with and without

procedure calls.

BB that contains a procedure call into its own region. We aggregate the blocks
into a region while maintaining the structure of the program constructs (for ex-
ample, loops and control flow statements). Regions are determined by a region
construction algorithm described in [AbouGhazaleh et al. 2002].

Figure 4 shows examples of region formation and how it reduces the number
of regions and preserves program structure. We show the cases where branches
and loops contain procedure calls. For Figure 4-a (a branch construct like an
if-then-else statement), if none of the blocks forming the construct contain any
procedure calls then all the blocks are merged into one region. Also, if followed by
a block without calls, then that block is merged with the larger region. However, if
any of the BBs that belong to the branch construct contain a call, then this block
forms a separate region not to be merged with other blocks. With respect to loops
(Figure 4-b), if the entire loop body does not include any calls then it forms a single
region that can be merged with other BB outside the loop. Similar to the case of
branches with procedure calls, if any of the BBs has a call then the body is divided
into more than a single region, and these regions cannot be merged with any region
outside the loop.

After forming regions, profiling is used to extract timing information about the
constructed regions. For loops, we collect the maximum cycle count of loop seg-
ments along with the maximum trip count of that loop, where loop segment includes
the total execution cycles of the loop iterations and, the trip count is the number
of iterations in the loop. We use loop segment and the maximum trip count to
estimate the loop body size, which is the number of cycles spent in a single iteration
of the loop. For each procedure, we collect the time spent executing that procedure.
High level information (WCC and average cycle count) about the entire application
is used to compute the PMP-interval size.

Section 3.4 describes how to compute the PMP-interval and the PMH-placement
as part of the offline phases of the collaborative scheme. The runtime phase of the
scheme is described in Section 3.5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

3.4 Offline Placement

The compiler plays a major role in the offline phase, computing PMP-interval and
then placing the PMHs in the application code, based on information collected
during the timing extraction phase.

3.4.1 Setting the PMP-interval. Determining the PMP-interval for invoking PMPs
is based on the average and worst case execution times of a program and the over-
head of PMP executions. We present an approximation for finding the optimal
number of PMPs to be executed to achieve minimum energy. We incorporate the
time overhead of changing the speed, which includes computing and setting the
speed, in the speed computation extending our previous work which only consid-
ered the energy overhead of the speed change in the computation [AbouGhazaleh
et al. 2001]. We assume that (1) each execution segment has a perfect execution
behavior (that is, the actual execution times of all the execution segments are equal
to the average execution time of each execution segment), and (2) the overhead,
Ttotal, of computing and setting the speed at each PMP is constant. Below are the
theoretical equations for the Greedy and Proportional speed setting schemes.

Proportional scheme : φi =
1

n − i + 1
(

n

load
−

Ttotal

wcc
)Πi−1

k=1

[

1 −
α

n − k + 1

]

(3)

Greedy scheme : φi =
1 − (1 − α)i

α
+ (

n

load
− n −

Ttotal

wcc
)(1 − α)i−1 (4)

where φi is the ratio fmax/fi (fi is the operating frequency for execution segment
i), n is the number of execution segments in the longest execution path, load
equals WCET/d, and α is the ratio of average to worst case cycles in each execu-
tion segment. To obtain n that corresponds to the minimum energy consumption
in the average case, we substitute the formula of φi in the energy formula from Sec-
tion 2 and solve iteratively for n. Hence, we get the PMP-interval size by dividing
the average number of cycles for executing an application by n. Below we show the
derivations of these formulas starting from Equations 1 and 2.

Derivation of the Proportional Scheme Formula. We start from the
Proportional scheme speed adjustment formula (Equation 1):

fi =
WCR/fmax

d − ct − Ttotal
fmax

Let avgc, aci be the average case, and actual case execution time of each execu-
tion segment i, respectively, running at fmax. Recall that our assumption for the
theoretical model asserts that aci = avgc. Then ct equals the sum of the average
execution times of the past segments divided by the segments’ operating frequency
normalized to the maximum frequency. Since d equals WCET/load then d equals

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·

n wcc/load. Now, let α = avgc/wcc. Then,

fi =

∑

n

i
wcc

n wcc/load −

∑

i−1

l=1
(avgc fmax/fl) −Ttotal

fmax

= (n−i+1)wcc

n wcc/load − avgc
∑

i−1

l=1
(fmax/fl) −Ttotal

fmax

= n−i+1

n/load −α
∑

i−1

l=1
φl −(Ttotal/wcc)

fmax

fmax/fi = 1
n−i+1

[

n
load

− α
∑i−1

l=1 φl −
Ttotal

wcc

]

φi = −α
n−i+1

[

1
−α (n

load −
Ttotal

wcc) +
∑i−1

l=1 φl

]

Let Ai = −α
n−i+1

and B = 1
−α

(n
load

−
Ttotal

wcc
). Starting from the above equation, we

use the following lemma to derive Equation 3. Proof of Lemma 1 is presented in
the Appendix.

Lemma 1:

φi = Ai(B +
i−1
∑

l=1

φl) =⇒ φi = AiBΠi−1
l=1 (1 + Al) (5)

Derivation of the Greedy Scheme Formula. We start from the Greedy
scheme speed adjustment formula (Equation 2):

fi =
wcc/fmax

d− ct − (WCR− wcc)/fmax − Ttotal
fmax

Using the same assumptions as in the Proportional scheme, we get:

fi = wcc

n wcc/load −

∑

i−1

l=1
avgc(fmax/fl) − (n−i)wcc−Ttotal

fmax

= wcc

(n/load −n+i) wcc − avgc
∑

i−1

l=1
(fmax/fl) −Ttotal

fmax

= 1

(n/load −n+i) − α
∑

i−1

l=1
(fmax/fl) −Ttotal/wcc

fmax

φi = i + (n
load − n −

Ttotal

wcc) − α
∑i−1

l=1 φl

Let C = −α and D = n
load − n −

Ttotal

wcc . Starting from the above equation, we use
Lemma 2 to derive Equation 4. Derivation of Lemma 2 is detailed in the Appendix.

Lemma 2:

φi = i + D + C

i−1
∑

l=1

φl =⇒ φi =
(1 + C)i − 1

C
+ D(1 + C)i−1 (6)

Since computing the speed is done in the OS, the OS needs to be periodically up-
dated about the application’s execution progress (through PMHs). Thus, the PMH
placement in the application’s code directly affects the slack utilization efficiency.
Next we present our PMH placement technique.

3.4.2 Placement of PMHs. After computing the PMP-interval, the goal of the
PMH-placement algorithm is to ensure that, at least, a PMH is executed before the
invocation of the next PMP. The placement algorithm traverses the CFG to insert
PMHs no further apart than the size of the PMP-interval (in cycles). Ideally, a
PMH should execute right before the PMP is invoked, so that the PMP has the most
accurate information. Since we do not control the application’s dynamic behavior,

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

we allow more than a single PMH to be executed in each execution segment to
improve the probability of an accurate speed computation.

In the PMH-placement algorithm [AbouGhazaleh et al. 2003], while traversing
the CFG of a procedure, a cycle counter ac is incremented by the value of the elapsed
worst-case cycles of each traversed region. A PMH is inserted in the code just before
this counter exceeds the PMP-interval and the counter is reset. PMH locations are
selected according to the different types of code structures in an application, namely
sequential code, branches, loops or procedure calls. Next we describe the criteria
of placement in each of these cases.

Sequential code. We define a sequential segment as a series of adjacent regions
in the CFG that are not separated by branches, loops, joins or back edges (although
it may include a procedure call). Sequential placement inserts a PMH just before ac
exceeds the PMP-interval. It is non trivial to insert a PMH in a region containing
a procedure call, since the procedure’s cycles are accounted for in the enclosing
region’s execution cycles. If the called procedure is too large (i.e., larger than the
PMP-interval), then inserting PMHs only at the region boundary is not sufficient
to update the WCR before the next PMP invocation. For this reason, we need
to further investigate possible locations inside a region related to the locations of
procedure calls. For regions in a sequential segment, PMHs are inserted according
to the following rules:

—When the cumulative counter ac exceeds the PMP-interval cycles and there are
no procedure calls in the region then a PMH is placed before the current region.

—If a region contains a procedure call and the body of a called procedure exceeds
the PMP-interval, a PMH is placed before the procedure call and another PMH
after the procedure call. The called procedure is marked for later placement.
The PMH before the call indicates the worst case remaining cycles at the start
of this procedure’s execution. The PMHs before and after the called procedure
– that contains PMHs– simplify the PMH placement scheme by avoiding the
need to track inter-procedural information about ac (i.e., ac does not have to be
remembered from one procedure to the next).

Branches. For any branch structure, each path leaving a branch is treated as
a sequential segment or recursively as a branch structure. At any branch, the value
of ac is propagated to all the branch’s paths. In a join, ac is set as the maximum
value of all the propagated counters just before the join.

Loops. The decision of placing PMHs in a loop is based on the loop segment
and loop body sizes (in cycles). The different cases for inserting PMHs in loops are
as follows:

—If the sum of ac and loop segment exceeds PMP-interval but the loop segment is
smaller than PMP-interval then a PMH is placed before the loop (see Figure 5-a).

—If a loop segment exceeds PMP-interval but the loop body is smaller than PMP-
interval, then a PMH is placed at the beginning of the loop body in addition to
the PMH placed before the loop. Another PMH is inserted after the loop exit
(see Figure 5-b).

—If the size of the loop body exceeds PMP-interval, a PMH is placed at the start
of the loop body and the loop is treated separately as either sequential code or

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·

���
���
���
���ac

lo
op

 s
eg

m
en

t

P
M

P
−

in
te

rv
al

(a)

����
����
����
����

����
����
����
����

���
���
���
���

lo
op

 s
eg

m
en

t

lo
op

 b
od

y

(b)

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���lo

op
 s

eg
m

en
t

lo
op

 b
od

y

(c)

Fig. 5. PMH placement in loops when (a) ac+loop segment > PMP-interval, (b)
loop body < PMP-interval < loop segment, and (c) loop body > PMP-interval.

code with branches. Another PMH is inserted after the loop exit (see Figure 5-c).

The reason for placing a PMH after the loop in the last two cases is to adjust any
over-estimation of WCR done by the loop’s PMHs. Nevertheless, over-estimation of
WCR is possible in the case where the actual number of loop iterations is unknown
during loop execution.

Procedure calls. As described above, in the processing of sequential seg-
ments, procedure calls are detected and accordingly some procedures are selected
to undergo PMH placement in their bodies. The procedure selection is subject to
satisfying the need for updating the WCR (through PMHs) at least once during
each PMP interval. For each procedure selected for placement, a PMH is placed
before a procedure call to compute wcri of each instance of this procedure, and to
store wcri in the procedure’s activation frame. Instrumentation code is inserted in
the procedure prologue to retrieve the value of wcri computed dynamically by the
PMH located before the call. Each PMH located inside this procedure uses this
value in its calculations of the remaining cycles. This instrumentation is necessary
because a procedure may be called from different program paths and each with
different wcri value even for the same called procedure (but different instance).
This is especially beneficial in case of recursive calls, where each call instance has
its own wcri estimate.

3.5 Run-time Execution

During run-time, PMHs compute and update WCR. At each ISR invocation, the
OS computes a new speed based on WCR. After each ISR, control switches to the
application during which more PMHs are executed. Execution continues in this
way until the program terminates.

3.5.1 PMH computation of wcri. The placement algorithm can insert two dif-
ferent types of PMHs, static or index-controlled based on the program structure.
The two types compute the worst-case remaining cycles based on whether the PMH
is located inside a loop or not.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

Static PMH. This type of PMH is placed in any location in the code outside
a loop body. Generally, a PMH is located inside a procedure. A PMH computes
wcri based on the remaining cycles at the start of the procedure instance, p wcr.
Since the path is only known at run-time, during execution, a procedure retrieves
its p wcr stored in its stack space. A static PMH computes wcri by subtracting
the displacement of the PMH location in the procedure from p wcr. For example,
for a PMH inserted 100 cycles from the beginning of the procedure, the remaining
number of cycles in the program is computed as: wcri = p wcr − 100.

Index-controlled PMH. PMHs of this type are inserted inside the body of a
loop where wcri varies according to the current loop iteration counter. The PMH
computes the worst case remaining cycles based on equations from [Vivancos et al.
2001]. Using the worst case cycles of a loop segment, wc loop segment, the term
wc loop segment / maximum trip count (maximum number of iterations) estimates
the size of a loop body, loop body. Then, wcri is computed as wcr before loop −

(iteration count∗ loop body)−ldisp, where wcr before loop is the remaining cycles
determined at run-time from the PMH that precedes the loop, and ldisp, is number
of cycles elapsed since the start of the loop body in a single iteration. The same
technique can also be applied in case of nested loops.

Estimating the loop’s execution time using wc loop segment rather than using
wc loop body * maximum trip count (this term denoted by wc lbody) creates a trade-
off between energy savings and timeliness. Although accounting for the wc lbody
overestimates the loop execution time and thus increases the probability that a task
will not miss its deadline3. This overestimation delays the slack availability until
the loop finishes execution. On the other hand, using wc loop segment lets the slack
to be used earlier in the execution, resulting in more energy savings. Even if the
actual cycles of a loop iteration exceeds loop body, the application is less likely to
miss a deadline in some cases: there is no large variation in the actual cycles of
each iteration, or the iteration with the duration of wc lbody happens early in the
execution that the remaining code would generate enough slack to avoid a deadline
miss. Our experiments confirm that these cases are very common, and thus no
deadlines were missed. We conclude that, if the application is very sensitive to
deadline misses, then index-controlled PMH computes the wcri as a function of the
wc lbody; otherwise, PMH computes it based on wc loop segment.

3.5.2 ISR execution of PMP. In our scheme, the OS virtually divides the pro-
gram into equal execution segments by invoking the ISR to execute a PMP peri-
odically. With the knowledge of the estimated WCR at each execution segment,
a dynamic speed setting scheme computes the desired operating frequency for the
next execution segment (using the equations in Section 3.2), and then issues a
speed-change request, if needed. The pseudocode of the ISR is listed in Figure 6.
The ISR reads the current time, frequency, and WCR, then computes a new speed.
If the computed frequency is different than the current one, the ISR searches for
an appropriate frequency, invokes a speed-change call, adjusts PMP-interval time
according to the new set frequency, and sets the timer for the next ISR invocation.

3Software analysis (in Section 3.3) does guarantee deadlines

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·

1 ct = read current time

2 fcurr = read current frequency
3 fnew = compute speed (algo, ct, d, wcc, WCR)

4 if (fnew 6= fcurr)
5 if (fnew ≤ fmin) fnew = fmin

6 else if (fnew ≥ fmax) fnew = fmax

7 else

8 set speed (discretize speed (fnew))
9 next PMP = ct + (PMP-interval /fnew)

10 set timer (next PMP)

11 rti // return from interrupt

Fig. 6. ISR pseudocode for PMPs.

������
������
������

������
������
������

������
������
������

������
������
������

PMH4

PMH5

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

R1

R4

R2

R3

R5

ac = 0

ac = 0

ac = 200

ac = 50

ac = 500

ac = 700

ac = 500

PMH1
PMH2

PMH3

PMH4
PMH5

R3

call Proc1

Fig. 7. Example of the PMH placement in a simple CFG.

Region WCC (cycle)

1 500

2 200

3 1200

4 300

5 200

Table II. Profiled wcc for each re-
gion in CFG shown in Figure 7

Loop body 1600 cycles

Max TripCounts 10 iterations

Procedure size 1100 cycles

disp of Proc1 50 cycles

Table III. Other profiled informa-

tion for CFG shown in Figure 7

3.6 Example on the PMH placement and execution

We present an example that shows how the placement algorithm works for the
simple CFG shown in Figure 7. The timing information for the CFG is listed in
Tables II and III. Assume that the PMP-interval is 1000 cycles. Below, we first
give the details on how the algorithm selects the locations to insert PMHs and then
the details of how each inserted PMH computes WCR.

—PMH1: A PMH is placed at the beginning of the CFG, indicating the WCR
(= 16,500 cycles) at the start of this procedure.

—PMH2 and PMH3: Since R2 starts a loop with a segment size of 16,000 cycles
that is larger than PMP-interval, PMH2 is placed at the end of R1 (before the
loop). Because the body of the loop exceeds PMP-interval, PMH3 is placed at
the start of R2 (inside the loop) and, the loop body is traversed for further PMH
placement (similar to case (c) in Figure 5).

—PMH4 and PMH5: Because the sum of ac and R3 cycles is larger than PMP-
interval, the algorithm looks for the first called procedure (i.e., Proc1) in region
R3 which is located at 50 cycles from the beginning of R3. Since the procedure
body is larger than PMP-interval, PMH4 and PMH5 are placed before and
after the procedure call, respectively. Procedure Proc1 is marked for later PMH

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

PMH Type Computed as:

1 static p wcr - 0 (= 16,500 for this procedure instance)

2 static p wcr - 500 (= 16,000)

3 index-controlled 16,000 - (iteration count x 1600)

4 index-controlled 16,000 - (iteration count x 1600) - 250

5 index-controlled 16,000 - (iteration count x 1600) - 1350

Table IV. The inserted PMHs details.

placement. The PMHs placed inside procedure Proc1 are not shown in this
example.

Assuming that the presented CFG is the application’s main procedure, p wcr
equals the application’s worst case remaining cycles (= 16,500). Table IV lists the
details of the computation done by each inserted PMH. Note that PMH2 is useful
in evaluating wcr before loop.

4. OS SUPPORT FOR THE COLLABORATIVE SCHEME

To support our collaborative scheme on the OS side, the OS uses information pro-
vided by the compiler and accordingly schedule the speed change. To do so, we
introduce an ISR for setting the speed [AbouGhazaleh et al. 2003] and a system
call to set the application’s power management parameters in the OS. Addition-
ally, more information is stored in the process’s context to support multi-process
preemption. Some details about each of OS extension needed are given below.

—Power-management parameters initialization system call: This system
call inserted by the compiler sets the application’s power management parameters
in the OS. The parameters include the length of PMP-interval (in cycles), and
the memory location of the WCR. This system call is called once at the start
of each application. Although PMP-interval is constant (in cycles) throughout
the application execution, each ISR instance computes its equivalent time (to set
the interrupt timer) based on the frequency set by this PMP instance. If there
are multiple applications running, the context switching mechanism adjusts these
timers (see below).

—Interrupt service routine: According to the dynamic speed setting scheme for
computing a new operating frequency, the ISR selects an appropriate speed/power
level to operate on. When working with discrete power levels, for a real-time ap-
plication to meet its deadline, there are two possible ways to set the operating
speed. One is to operate on the smallest power level larger than or equal to the
desired frequency obtained from the speed setting scheme. The second is to use
the dual-speed-per-task scheme [Ishihara and Yasuura 1998]. The second scheme
may be more efficient, depending on the overhead of two speed changes. How-
ever, in this work we choose to select the closest speed larger than the desired
speed for simplicity.

—Preemption support: In case there is more than one application running in a
preemptive system, the OS should keep track of how long each application was
running with respect to the current PMP-interval. At each context switch, the
elapsed time in the current PMP-interval is stored as part of the state of the
departing process (application) and replaced by the corresponding value of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·

fetch width 4 instruction/cycle

decode width 4 instruction/cycle

issue width 4 out of order

commit width 4 instruction/cycle

RUU size 64 instruction

LSQ size 16 instruction

FUs 4 int, 1 int mult/divide, 4 fp, 1 fp mult/divide

branch pred. bimododal, 2048 table size

L1 D-cache 512 sets, 32 byte block, 4 byte/block, 1 cycle, 4-way

L1 I-cache 512 sets, 32 byte block, 4 byte/block, 1 cycle, 4-way

L2 cache 1024 sets, 64 byte block, 4 byte/block, 1 cycle, 4-way

memory 40 cycle hit, 8 bytes bus width

TLBs instruction:16 sets, 4096 byte page - data: 32 sets, 4096byte page

Table V. Simplescalar configuration.

newly dispatched process. The elapsed time in the current PMP-interval and the
operating frequency become part of the application context.
In case of multiple applications, every time the application is preempted, the
timer value is stopped and the time value is reset when the application is re-
sumed. For this, the PCB must contain a variable, saved PMP , that saves
these values: at preemption time, saved PMP = next PMP − ct and at resume
time, next PMP = ct + saved PMP , where ct is the current time.
As mentioned above in Section 3, when the system allows for multitasking,
our scheme will extract timing information (i.e., slack) from the task execution
through the PMHs, and the operating system will decide how to use such slack
in inter-task DVS [Mossé et al. 2000; Pillai and Shin 2001].

5. EVALUATION

Our evaluation of the collaborative scheme is divided into two parts. First, we
compare our scheme against other compiler and OS intra-task DVS schemes using
simulations in Section 5.1. Second, we qualitatively analyze the advantages and
disadvantages of our scheme against a compiler-directed intra-task DVS scheme in
Section 5.2.

5.1 Simulation Results

We evaluate the efficacy of our scheme in reducing the energy consumption of DVS
processors using the SimpleScalar micro-architecture toolkit [Simplescalar 2001]
with configurations shown in Table V. Also, a dual-issue processor with similar
configurations was tested and had the same energy savings trends. Because these
results are similar, we present only the results for the 4-way issue machine.

We extended the sim-outorder simulator with a module to compute the dynamic
and static energy of running an application as Etot = Edyn + Estatic. Dynamic
energy, Edyn, is a function of the number of cycles, C, spent at each voltage level, V
(Edyn = P t = CV 2, since fα 1

t
and E = kCV 2, where k is a constant–in this paper,

we consider only k = 1). C includes the cycles for executing the application as well
as the cycles for computing the speed in PMPs and wcri in PMHs. Static energy,
Estatic, is the integration of the static power dissipated until the deadline. Static
power is assumed to be constant and equals 10% of the maximum power [Butts

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

Frequency(MHz) 700 666 633 600 566 533 500 466

Voltage (V) 1.65 1.65 1.60 1.60 1.55 1.55 1.50 1.50

Frequency(MHz) 433 400 366 333 300 266 233 200

Voltage (V) 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10

Table VI. The power levels in the Transmeta processors model.

Frequency(MHz) 1000 800 600 400 150

Voltage (V) 1.8 1.6 1.3 1.0 0.75

Table VII. The power levels in the Intel XScale processor model.

and Sohi 2000]. We also considered the overhead of setting the speed by adding a
constant energy overhead for each speed-change to the total energy consumption.
In the experiments below, we used the Transmeta Crusoe and the Intel XScale
CPU cores. The Transmeta Crusoe has 16 speed levels and the Intel XScale has
five levels. Tables VI and VII show the different speeds and the corresponding
voltages for both the Transmeta and Intel models. The energy consumed in other
subsystems is beyond the scope of this evaluation.

We emulate the effect and overhead of the ISR in SimpleScalar by flushing the
pipeline at the entry and exit of each ISR. The PMP (i.e., the ISR) computes a new
frequency every PMP-interval and then sets the corresponding voltage. The no-
power-management (NPM) scheme that always executes at the maximum speed,
and static power management (SPM) that slows down the CPU based on static
slack [Aydin et al. 2001]. In addition, we evaluate our Greedy and Proportional
power management from Section 3.2.

We show the no power management (NPM) scheme that always executes at the
maximum speed and static power management (SPM) scheme that slows down
the CPU based on static slack [Aydin et al. 2001]. To demonstrate the potential
benefit of using PMHs, we compare the collaborative technique (PMP+PMH) with
two schemes that use only PMPs: the first (PMP-pcall) places a PMP before each
procedure call, and the second (PMP-plcmnt) inserts PMPs according to the PMH-
placement algorithm.

In our benchmarks, the most frequently called procedures have simple code struc-
tures and are less likely to generate slack due to their small sizes. To be fair to the
PMP-call scheme (i.e., to reduce its overhead), we do not place PMPs before small
procedures that do not have any call to other procedures. We show experimental
results for three time-sensitive applications: automatic target recognition (ATR),
an MPEG2 decoder, and a sub-band tuner. In the simulation, all the application’s
deadlines were met for the tested data sets.

5.1.1 Impact on energy and performance. Our results show that, as the time
allotted (or the deadline) for an application to execute is increased, less dynamic
energy is consumed due to the introduction of more slack that can be used to
reduce the speed/voltage. However, as we extend the deadline, more static energy
is consumed. Hence, the total energy is reduced due to savings in dynamic energy,
but it can be increased due to the increase in the static energy. This is especially
obvious when extending the deadline does not result in enough slack to lower the
speed. When an application runs at the same frequency as with a tighter deadline, it

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Proportional

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Greedy

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Xscale - Proportional

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Xscale - Greedy

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

Fig. 8. Average energy consumption normalized to no power managemnt for ATR em-
ploying Transmeta Crusoe (top row and Intel Xscale (bottom row) models.

consumes the same dynamic energy, but higher static energy. This is clear with the
ATR application in the Intel case when the deadline exceeds 12 ms; the application
consumes constant dynamic energy, but the static energy consumption increases as
the deadline increases.

Automatic target recognition. The ATR application4 does pattern match-
ing of targets in input image frames. We experimented with 190 frames, the number
of target detections in each frame varies from zero to eight detections, and the mea-
sured frame processing time is proportional to the number of detections within a
frame. In Figure 8, since Transmeta has more power levels than Intel, the static
scheme for Intel is flat for several consecutive deadline values; e.g., for deadlines
larger than 12 ms, the operating frequency is the same. At tight deadlines (up to
8 ms), the static scheme for the Transmeta processor executes the application at
the highest speed, fmax; this yields a higher-than-NPM energy consumption due to
the overhead of the PMP executed at each data frame processing. This is not true
for our Proportional and Greedy schemes because of dynamic slack reclamation.
On the other hand, the same workload constitutes only about 80% of the Intel
processor load due to a higher fmax than Transmeta.

When using the PMP-plcmnt and PMP+PMH schemes in the Transmeta model,

4The original code and data for this application were provided by our industrial research partners.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

Greedy and Proportional consume less energy than the static scheme because of
dynamic slack reclamation. However, when using the Intel model, static power
management may consume less energy for some deadlines (12–21 ms for Propor-
tional and 8, 12–16 ms for Greedy). At those deadline values, the dynamic schemes
operate most of the time on the same frequency as static power management. These
schemes do not have enough slack to operate at a lower performance level; how-
ever, the overhead of code instrumentation and voltage scaling increase the energy
consumption of the dynamic schemes with respect to the static scheme.

The energy savings of the Greedy scheme relative to the Proportional scheme vary
based on the deadline. When deadlines are short, Greedy consumes less energy than
Proportional. Because Greedy is more aggressive in using slack than Proportional,
it is more likely to select a lower speed earlier in the execution than Proportional.
Once Greedy transitions to a low speed, the dynamic slack reclaimed from future
intervals helps Greedy to stay at relatively low speed later in the execution. On
the other hand, Proportional selects a medium range of speed levels throughout
the execution. When increasing the deadline (more than 10 ms), Greedy exploits
most of the static slack early in the execution to reach low speeds. However, the
amount of dynamic slack generated later in the execution is not large enough to
maintain these low speeds. Thus, the power manager needs to increase the speed
causing Greedy to consume more energy than Proportional. In the case of the Intel
processor, Greedy’s energy consumption is lower than Proportional at more relaxed
deadlines (≥15 ms). This is due to the minimum speed level that prevents Greedy
from exploiting all the slack at the beginning of execution.

In the Intel case, the static scheme outperforms Greedy scheme for 12-16 ms
deadlines. This is because most of the speeds computed by Greedy scheme are
slightly higher than 150MHz but can only operate on 400 MHz, which is the same
operating frequency for static power management in this deadline range. Hence,
both schemes run with almost the same power but because of the overhead incor-
porated with the dynamic PMP-only schemes, Greedy consumes more energy than
the static scheme.

The PMP-plcmnt scheme has close energy consumption to our PMP+PMH
scheme for ATR. There are two reasons for the result: high overhead because of the
large number of called procedures and the higher accuracy of the finer-granularity
PMP invocation. It is also the case that most of the executed PMPs do not lead to
a speed change, and thus there is no energy savings achieved from executing these
PMPs.

MPEG video decoder. We collected timing information about the MPEG2
decoder [MSSG] using a training data set of six movies and tested it on 20 different
movies. Our scheme inserts PMHs in the decoder’s code based on profile informa-
tion about frames of the training set movies. We run experiments for four different
frame rates: 15, 30, 45 and 60 frame/sec that correspond to deadlines 66, 33, 22,
and 16 ms per frame, respectively.

Figure 9 shows the normalized energy consumption for three of the test movies
for Transmeta (upper part of the figure) and Intel (lower part of the figure) models.
For presentation simplicity, we only show the energy consumption for the Greedy
scheme because Greedy outperforms Proportional scheme. Similar to the ATR

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

 Transmeta- BigE.mpg

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Transmeta - atom.mpg

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Transmeta- robot.mpg

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 40

 50

 60

 70

 80

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Xscale- BigE.mpg

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 40

 50

 60

 70

 80

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Xscale- atom.mpg

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 40

 50

 60

 70

 80

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Xscale- robot.mpg

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

Fig. 9. Average energy consumption of Greedy PMP+PMH normalized to the no power
management scheme for the MPEG2 decoder employing Transmeta Crusoe (top row) and
Intel XScale (bottom row) models.

Fig. 10. Size distribution (in million cycles) for the sub-band filter events.

results, our proposed PMP+PMH scheme consumes less energy than the other
schemes. The MPEG decoder code includes mainly a set of nested loops, most of
which have large variation in their execution times. As a result, in our scheme,
the number of executed PMHs is much larger than the invoked PMPs. Hence, the
WCR estimation is improved over having only one PMH for each PMP invocation.
In comparison with the PMP-plcmnt technique (replacing the PMHs with PMPs),
PMP execution’s energy overhead is higher, which overshadows the energy saving
from the few extra speed adjustments. This is especially true for the Transmeta
model. Because of the large number of speed levels that are close in range, this
creates the chance for large number of speed changes in PMP-plcmnt. Each speed
change results in small energy savings compared to the PMP energy overhead. The
PMP-pcall scheme has the highest energy consumption due to the large number of
procedure calls within loops in this application.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 23

no. PMHs executed no. PMPs executed no. speed changes

PMP-plcmnt – ≈ 19 × 106 ≈ 13.5 × 103

PMP+PMH ≈ 19 × 106 ≈ 77.5 × 103 ≈ 11.8 × 103

Table VIII. The number of executed PMPs, PMH and speed changes for the sub-band tuner.

Sub-band Tuner. A sub-band tuner5 is a signal processing application that
accepts signals as input events. It uses time and frequency domain analysis to
extract and process signals of interest, called peaks and ridges, from those events.
The number of cycles per event processed varies based on the number of peaks and
ridges detected in each event but the deadline for each event is fixed. We experi-
mented with a trace of 9,853 events. From the collected timing information about
each event processing time, we noticed a large variation between the average and
worst case execution times. An event’s average execution time is 200 times smaller
than its worst case execution time. The size distribution is shown in Figure 10
(note the logarithmic scale for the Y-axis). To make good use of the dynamic slack
for the average event, the scheme tailors the frequency of invoking a speed-change
(PMP-interval) based on the event’s average execution time, and PMHs are placed
accordingly. As a result, events larger than average size would experience more
PMH executions and speed-change invocations. This effect is prominent in case of
very long events.

Figure 11 shows the energy consumption for the tested schemes. Among the
dynamic schemes, PMP+PMH performs best. When comparing PMP+PMH with
static, PMP+PMH performs well in high system loads (small deadlines). As the
system load decreases, the difference in energy consumed by static and PMP+PMH
decreases. For the Intel model, the static scheme performs better than PMP+PMH
for very small loads, due to the large difference between the lowest two speed levels
(400 MHz and 150 MHz). When the static operates at 400 MHz, the dynamic
schemes may have dynamic slacks to operate on less than this frequency but not
enough slack to operate at 150MHz; therefore, the 400MHz frequency is selected to
avoid missing deadlines. The difference in energy consumption is due to the extra
instrumentation added by the dynamic schemes; this is particularly true when there
is a large variation in the execution times among different events as with the sub-
band tuner. In the Transmeta model, this does not happen since there are several
frequencies between 200MHz and 400MHz, allowing for the dynamic schemes to
actually execute at lower frequencies.

Although PMP-plcmnt performs almost as well as PMP+PMH for the ATR and
MPEG benchmarks, PMP-plcmnt performs much worse for this application. This is
due to the large variation in execution times described earlier that required inserting
relatively large number of PMHs. The overhead effect is significant in PMP-plcmnt,
because the amount of dynamic slack between 2 consecutive PMPs is too small to
compensate this overhead. Table VIII compares the two techniques in term of the
number of executed PMHs, PMPs and actual speed change that takes place. We
deduce that the work done by most of the executed PMPs (in PMP-plcmnt) was
not useful. On the contrary, the overhead of placed PMHs in our scheme is minimal

5The original code and data trace files for this application were also provided by our industrial

research partners.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 ·

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Proportional

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Greedy

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

 30

 40

 50

 60

 70

 80

 90

 100

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

XScale - Proportional

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

 30

 40

 50

 60

 70

 80

 90

 100

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

XScale - Greedy

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

Fig. 11. Average energy consumption normalized to the no power management
scheme for the Sub-band filter application employing Transmeta Crusoe (top row)
and Intel XScale (bottom row) models.

(few cycles) compared to PMP-plcmnt. Thus, the total energy consumption using
PMHs is much less than inserting PMPs directly in the code.

5.1.2 Run-time Overhead. Our scheme introduces overhead due to PMPs and
PMHs. In this section, we further investigate the impact of each on overall perfor-
mance (number of cycles and number of instructions).

Number of instructions. Increasing the number of instructions in the appli-
cation by inserting PMPs and PMHs could have a negative effect on (1) the cache
miss rate and (2) the total number of executed instructions. Both these factors
could degrade performance. We measured their effects through an implementation
in SimpleScalar. In our scheme, the measured effect of increasing the code size
on the instruction cache miss rate is minimal since the inserted PMH code is very
small. There is no significant increase in cache misses (instruction and data) for
our benchmarks, hence we do not expect a negative effect on the memory energy
consumption due to our scheme. A static PMH takes 36 instructions to execute.
Index-controlled PMHs are simplified to static PMHs inserted inside the loop with
the addition of a division operation executed only once for each loop to compute the
size of a loop body. The value of wcri is decremented in each iteration by the size
of the loop body. Our measurements indicated that a PMP takes from 74 to 463
instructions to compute and select a speed (excluding the actual voltage change).

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 25

The number of executed instructions is kept minimal by (1) invoking the PMP at
relatively large PMP-intervals (it ranges from 50 K to 580 K cycles in the presented
applications) and (2) avoiding the excessive insertion of PMHs. For example, in the
ATR application, for each PMP-interval, only extra 505 instructions are executed
on average (including all executed PMHs and a PMP in this PMP-interval6). The
total increase in the number of executed instructions due to the overhead is 0.05%
for ATR, 0.25% for MPEG, and 3.7% for sub-band tuner. With respect to other
intra-task DVS schemes, like PMP-plcmnt, the average increase in the number
of executed instructions is <1% in ATR, 1.4% in MPEG, and 47% in sub-band
tuner. The large increase in the number of executed instructions in sub-band tuner
when using PMP-plcmnt is due to the excessive execution of PMPs (as described
in Section 5.1.1).

Number of cycles. The extra inserted code (PMHs and PMPs) increases
the number of cycles taken to execute an application. The average execution of
each PMH takes about 13 cycles and PMP takes from 22 to 229 cycles to execute7 ,
excluding the actual voltage change). The total increase in the number of cycles
ranges between 0.19% to 0.4% for ATR, 0.4% to 1.7% for MPEG, and 4.6% to 4.8%
for sub-band tuner (the range corresponds to the low to high deadlines selected).
In comparison to PMP-plcmnt, the average increase in the number of executed
instructions is <1% in ATR, 1.5% in MPEG, and 64% in sub-band tuner. When
using PMP-plcmnt, the execution of a large number of PMPs in sub-band tuner
causes a relatively larger increase in the number of cycles.

We also note that the total overhead cycles decrease when the processor frequency
is decreased. This is because the memory latency becomes relatively small when
compared to the CPU frequency; that is, the CPU stalls for fewer cycles (but still
stalls for the same amount of time) waiting for data from memory.

5.2 Analysis of the collaborative scheme versus a compiler intra-task DVS scheme

In this section, we highlight the differences between the collaborative scheme and
compiler-directed intra-task DVS schemes. We compare our collaborative scheme
with the scheme presented by Shin et al.[Shin et al. 2001] as an example of an intra-
task DVS scheme. In Shin’s scheme, the compiler constructs a CFG augmented
with the WCR at each basic block, and then selects the CFG edges where it inserts
voltage scaling code. The selected voltage scaling edges (VSE) are the ones that
drop the WCR more than the worst case path at that branch. In Figure 12, we show
an example of an augmented CFG and the selected VSE marked as bold arrows.
This CFG is an extension of the example in [Shin et al. 2001]. The compiler
computes the speed slow-down factor (SUR) for each VSE and stores them in a
speed table. The speed table for the example CFG is shown in Figure 12. At
run-time, the new speed is computed at each VSE as SUR ∗ fcurr , where fcurr is
the current operating frequency. One of the advantages of this scheme is its low
run-time overhead. Run-time overhead is reduced by both selecting the VSE and
computing the SUR for each VSE (except after loop exit) at compile time.

6An inserted PMH can be executed more than once in a single PMP-interval, for example if placed
inside a loop.
7Note this is a 4-way architecture, executing about 2 instructions per cycle.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 ·

B0
20

B2
10

B7
10

B3
10

B4
10

B5
10

B6
10

B8
10

B9
10

B10
10

3130,
3090,
3050

3140,
3100,
3060

3150,
3110,
3070

B1
50

3160, 3120
3080, 3040

B11
20

������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

3240

3170

3040

3030

3020

3010

PMH

3220
PMH

1

PMH
2

PMH

PMH

3

4

5

2000

worst−case
cycles remaining

Block worst−
case cycles

���
���
���
���

700 MHz

0.98

0.63

0.96, 0.97, 0.98, 1

Speed Table
VSE SUR

0.96, 0.97, 0.98

0.99, 0.99, 0.99

0.99

assume PMP interval = 50 cycles

Deadline = 3240 cycles/700 MHz

B0 − B2

B1 − B11

B2 − B10

B3 − B8

B4 − B6

B8 − B10

B0

VSE

PMH

Fig. 12. Sample CFG and its constructed speed table.

The scheme in [Shin et al. 2001] will work best when using continuous frequency
scaling, but it does not work as well when using a more realistic processor with
discrete speed levels. A solution would be to round the computed speed to the
lowest speed level higher than the desired speed (as we follow in our scheme).
Due to the speed rounding and the fact that the SUR is computed based on local
information (about a specific branch), slack that is not used at any of the VSEs is
never reclaimed later in the execution. For example, if we consider the Transmeta
model with an initial frequency of 700 MHz, then according to the speed table
(computed offline), the scheme will not change the speed in any of the shown VSEs
except in the B1-B11 edge. For example, in the B0-B2 edge, since no speed change
takes place (f = 0.98 ∗ 700 = 686 and 686 MHz > 666 MHz) then a 50 cycle slack
is lost (3220-3170). Even at the B1-B11 edge, the speed was reduced to 466 MHz,
although the desired speed was 441 MHz. The slack resulting from the rounding to
the higher discrete frequency is considered as lost slack. Furthermore, subsequent
VSEs will scale down the speed relative to the 466 MHz rather than 441 MHz;
hence, this extra speedup looses more slack.

Another reason for losing slack is due to scheduling the speed based on profile
information rather than run-time information. Consider when the actual execution
of B1 takes 20 cycles rather than 50 cycles. The difference in both times can not be
reclaimed as slack with an offline speed scheduling. Although profile information
can give a good estimate for each basic block, the overhead of executing a VSE will
prevent its insertion at every basic block boundary. Thus, the profiled time between
consecutive VSE will not accurately reflect the actual execution time. Hence, the
further apart the VSE are from each other, the more slack is lost.

In the collaborative scheme, we extract global information about the progress of

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 27

an application (through PMHs) and decide the speed setting at run-time (through
PMPs) based on the run-time behavior of the application. Since we accumulate the
slack, at the time of PMP invocation, we can exploit all the slack generated since
the last PMP. Figure 12 shows the PMH placement based on a PMP-interval of 50
cycles. If execution follows the B0-B2-B3-B8-B10 path (and the actual execution
of the basic blocks matches the profiled measurements), a PMP is invoked after B8

finishes execution. Since PMH5 sets WCR to 3030 cycles. The computed speed is
then set to 3030

3240−50
∗ 700 = 664 MHz, which is rounded to 666 MHz. The scheme

was able to reduce the speed to the next lower level because it had a more accurate
estimate of the actual available slack.

Scheduling the speed based on knowledge of the overall application’s WCR, the
current time and the deadline (Equations 1 and 2) account for the dynamic slack due
to the application’s execution time variation and the speed rounding. For example,
the speed rounding from 664 MHz to 666 MHz creates extra slack that will be used
at the next PMP as this speedup will be reflected in the current time. Also, when
the actual execution is less than the profile measurements, this difference will show
as a slack when using the current time. Thus, the collaborative scheme succeeds in
detecting slack that was not used by the compiler-only scheme.

On the other hand, the collaborative scheme may not report the exact amount of
slack at the time of a PMP invocation due to the lack of perfect synchronization be-
tween PMHs and PMPs. For example, the PMP executed after B8 in our example,
has an actual slack of 220 cycles (3240-3020), but PMH5 reported only 210 cycles
(3240-3030). Although this slack difference is not exploited at this PMP, it will be
used, along with any newly generated slack, at the next PMP. Also, in contrast to
the VSE execution, the lack of perfect PMH-PMP synchronization causes the slack
to be used only when a PMP is invoked not when the slack is generated.

In summary, a compiler-directed intra-task DVS scheme will outperform the col-
laborative scheme when both (1) there are plenty of CPU speed levels and (2) the
overhead of the speed change is insignificant so that executing frequent VSEs does
not negatively affect energy consumption. Otherwise, based on the frequency of
executing VSEs, the energy consumption would fall between the PMP-pcall and
the PMP-plcmnt schemes presented in the paper.

6. RELATED WORK

There have been a number of research projects that use DVS schemes to reduce
the processor’s energy consumption. Examples on work that implements DVS in
non-time-critical applications include [Childers et al. 2000; Hsu and Kremer 2002].
An operating system solution proposed in [Childers et al. 2000], periodically invokes
an interrupt that adjusts the processor speed in order to maintain a desired perfor-
mance goal. The OS keeps track of the of the accumulated application’s instruction
level parallelism throughout the application execution time. In [Hsu and Kremer
2002], the compiler identifies program regions where the CPU can be slowed down.
The speed set in each region is based on the expected time the CPU would wait for
a memory access. An implementation for this scheme and a physical measurement
of the consumed energy on a real system was presented in [Hsu and Kremer 2003].
However, this work did not consider real-time constraints and did not exploit slack

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 ·

time generated in computation-dominated applications. An analytical study of the
bounds on energy savings from using Intra-task DVS is presented in [Xie et al.
2003]. Work presented in [Saputra et al. 2002] selects the best supply voltage for
each loop nest based on simulated energy consumed in a loop nest. The voltage
levels are set at compile time for each region using an integer linear programming
DVS strategy.

Time restrictions in time-sensitive applications mandate the processor to finish
the application’s execution before its deadline. On the OS level, [Gruian 2001] deter-
mines a voltage scheduling that changes the speed within the same task/application
based on task’s statistical behavior. The work in [Pillai and Shin 2001] modified
the EDF and RMS in RT-Linux to incorporate voltage scheduling.

[Shin et al. 2001] and [Azevedo et al. 2002] apply a compiler controlled DVS in
real-time applications. In [Azevedo et al. 2002] the compiler inserts checkpoints
at the start of each branch, loop, function call, and normal segment. Information
about the checkpoints along with profile information are used to estimate the re-
maining cycle count and hence compute a new frequency. Run-Time overhead of
updating data structures and setting the new voltages is relatively high especially on
the constructed nodes granularity (almost every basic block). In [Shin et al. 2001],
the compiler selects a set of branches to insert the voltage change calls. It computes
and stores the slowdown factor at each voltage change branch. In addition to not
exploiting all the generated slack when operating at a discrete speed levels, the
scheme has a larger memory footprint. Since procedures are called from different
paths with different WCR, more memory is needed to store the speed-slowdown
factors (computed offline) for each possible procedure instance. Alternatively, the
slowdown factor can be dynamically computed at the expense of increasing the
run-time overhead.

In [Kim et al. 2002], a performance analysis for a set of DVS schemes was pre-
sented aiming to find the strengths and drawbacks of the schemes being tested on a
unified DVS simulation environment. A couple of intra-DVS offline scaling decisions
[Shin et al. 2001; Gruian 2001] were studied. It was shown that the performance of
these two schemes were quite different depending on the available slack times.

There are several static and dynamic compiler techniques for estimating the best
and worst case execution times of programs. A review of different tools for es-
timating the WCET is presented in [Puschner and Burns 2000]. Some of these
tools use static analysis to produce a discrete WCET bound. On the other hand,
parametric analysis for computing WCET as in [Vivancos et al. 2001] evaluates
expressions in terms of parameter variables carrying information about some pro-
gram segments; e.g., WCET of loops is presented by symbolic formulas that are
evaluated at run-time when the number of loop iterations is determined.

7. CONCLUSION

In this paper, we presented a hybrid compiler-operating system intra-task DVS
scheme for reducing the energy consumption of time-sensitive embedded appli-
cations. The operating system periodically invokes Power Management Points
(PMPs) to adapt processor performance based on the dynamic behavior of an appli-
cation. Information about run-time temporal behavior of the application is gathered

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 29

by very low cost power management hints (PMHs) inserted by the compiler in the
application. We described our collaborative scheme and its advantages over a purely
compiler-based approach. We also presented an algorithm for inserting PMHs in
the application code to collect accurate timing information for the operating sys-
tem. Considering the relatively expensive overhead of a voltage/speed-change, our
scheme reduces the energy consumption by controlling the number of speed-changes
based on application behavior. Finally, we presented results that show the effective-
ness of our scheme. Our results showed that our scheme is up to 57% better than no
power management and up to 32% better than static power management on several
embedded applications. Furthermore, we demonstrated that our compiler-directed
scheme can achieve better energy reductions than a scheme that relies on the pro-
grammer and semantic information about an application (see [AbouGhazaleh et al.
2002] for more details).

Appendix

A. DERIVATION FOR LEMMA 1

Lemma A.1.

φi = Ai(B +

i−1
∑

l=1

φl) =⇒ φi = AiBΠi−1
l=1 (1 + Al) (7)

Proof (by induction):
Base case: at i = 1, it is trivial to see that the left hand side (LHS) of Equation (7)

is the same as the right hand side (RHS):

LHS = A1B = RHS

Induction step: Let Equation (7) hold for all n < i. We prove that it also holds
for n = i. By substituting the RHS of Equation (7) for φl, it is sufficient to prove
that:

φi = Ai(B +

i−1
∑

l=1

AlBΠl−1
k=1(1 + Ak)) = AiBΠi−1

l=1 (1 + Al)

as below:

φi = Ai(B +
∑i−1

l=1 AlBΠl−1
k=1(1 + Ak))

= AiB(1 +
∑i−1

l=1 AlΠ
l−1
k=1(1 + Ak))

= AiB(1 + A1 +
∑i−1

l=2 AlΠ
l−1
k=1(1 + Ak))

= AiB((1 + A1) +
∑i−1

l=2 Al(1 + A1)Π
l−1
k=2(1 + Ak))

= AiB((1 + A1) + A2 + (1 + A1) +
∑i−1

l=3 AlΠ
l−1
k=2(1 + Ak))

= AiB((1 + A1)(1 + A2) +
∑i−1

l=3 AlΠ
l−1
k=2(1 + Ak)))

=
= AiB((1 + A1)(1 + A2).....(1 + Ai−1))

= AiBΠi−1
l=1 (1 + Al)

= RHS

End of Lemma 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 ·

B. DERIVATION FOR LEMMA 2

Lemma B.1.

φi = i + D + C

i−1
∑

l=1

φl =⇒ φi =
(1 + C)i − 1

C
+ D(1 + C)i−1 (8)

Proof (by induction):
Base case: at i = 1, it is trivial to see that LHS of Equation (8) is the same as

the RHS:

LHS = φ1 = 1 + D = RHS

Induction step: Let Equation (8) hold for all n < i. We prove that it also holds
for n = i. By substituting the RHS of Equation (8) for φl, it is sufficient to prove
that:

φi = i + D + C

i−1
∑

l=1

(1 + C)l − 1

C
+ D(1 + C)l−1 =

(1 + C)i − 1

C
+ D(1 + C)i−1

as follows:

φi = i + D + C
∑i−1

l=1

[(1+C)l
−1

C + D(1 + C)l−1
]

= i + D +
∑i−1

l=1((1 + C)l − 1) + DC
∑i−1

l=1(1 + C)l−1

= i + D − (i − 1) +
∑i−1

l=1(1 + C)l + DC
∑i−1

l=1(1 + C)l−1

= D + 1 + (1+C)i
−1

C
− 1 + DC (1+C)i−1

−1
C

= (1+C)i
−1

C + D(1 + C)i−1

= RHS

End of Lemma 2.

REFERENCES

AbouGhazaleh, N., Childers, B., Mosse, D., Melhem, R., and Craven, M. 2002. Collabo-

rative compiler-OS power management for time-sensitive applications. Tech. Rep. TR-02-103,
Department of Computer Science, University of Pittsburgh, Department of Computer Science,

University of Pittsburgh, Pittsburgh, PA.

AbouGhazaleh, N., Childers, B., Mosse, D., Melhem, R., and Craven, M. 2003. Energy man-
agement for real-time embedded applications with compiler Support. In LCTES’03: Proceed-

ings of the 2003 ACM SIGPLAN conference on Language, Compiler, and Tools for Embedded

Systems. ACM Press, New York, NY, USA, 284–293.

AbouGhazaleh, N., Mosse, D., Childers, B., and Melhem, R. 2001. Toward the placement
of power management points in real-time applications. In COLP’01: Workshop on Compilers

and Operating Systems for Low Power. IEEE press, Piscataway, NJ, USA.

AbouGhazaleh, N., Mosse, D., Childers, B., Melhem, R., and Craven, M. 2003. Collabora-
tive operating system and compiler power management for real-time applications. In RTAS’03:

IEEE Real-Time Embedded Technology and Applications Symposium. IEEE Press, Piscataway,
NJ, USA.

Aydin, H., Melhem, R., Mosse, D., and Alvarez, P. 2001. Determining optimal Processor

Speeds for Periodic Real-time Tasks with Different Power Characteristics. In ECRT’01: IEEE
Euromicro Conference on Real-time Systems. IEEE Press, Piscataway, NJ, USA.

Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum, A., and Nicolau,

A. 2002. Profile-based dynamic voltage scheduling using program checkpoints. In DATE ’02:

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 31

Proceedings of the conference on Design, Automation and Test in Europe. IEEE Computer
Society, Washington, DC, USA, 168.

Butts, J. A. and Sohi, G. S. 2000. A static power model for architects. In MICRO 33: Pro-
ceedings of the 33rd annual ACM/IEEE international symposium on Microarchitecture. ACM

Press, New York, NY, USA, 191–201.

Childers, B., Tang, H., and Melhem, R. 2000. Adapting processor supply voltage to instruction-

level parallelism. In Koolchips 2000 Workshop, during 33th Annual International Symposium
on Microarchitecture (MICRO-33).

Gruian, F. 2001. On energy reduction in hard real-time systems containing tasks with stochastic

execution times. In IEEE Workshop on Power Management for Real-Time and Embedded
Systems.

Hsu, C. and Kremer, U. 2002. Single vs. multiple regions: A comparison of different compiler-
directed dynamic voltage scheduling approaches. In Power Aware Computer Systems (PACS).

ACM Press, New York, NY, USA.

Hsu, C. and Kremer, U. 2003. The design, implementation, and evaluation of a compiler algo-

rithm for cpu energy reduction. In PLDI’03: Programming Language Design and Implementa-
tion. ACM Press, New York, NY, USA.

Ishihara, T. and Yasuura, H. 1998. Voltage scheduling problem for dynamically variable voltage
processors. In ISLPED ’98: Proceedings of the 1998 International Symposium on Low Power

Electronics and Design. ACM Press, New York, NY, USA, 197–202.

Kim, W., Shin, D., Yun, H., Kim, J., and Min, S. 2002. Performance comparison of dynamic
voltage scaling algorithms for hard real-time systems. In Real-Time and Embedded Technology

and Applications Symposium. IEEE press, Piscataway, NJ, USA.

Mahalanobis, A., Vijaya Kumar, B. V. K., and Sims, S. R. F. 1996. Distance-classifier correla-

tion filters for multiclass target recognition. Optical Society of America 35, 7 (June), 3127–+.

Min, R., Furrer, T., and Chandrakasan, A. 2000. Dynamic voltage scaling techniques for

distributed micro-sensor networks. In IEEE VLSI Workshop. IEEE Press, Piscataway, NJ,
USA.

Mossé, D., Aydin, H., Childers, B., and Melhem, R. 2000. Compiler-assisted dynamic power-
aware scheduling for real-time applications. In COLP’00: Workshop on Compilers and Oper-

ating Systems for Low Power. IEEE Press, Piscataway, NJ, USA.

MSSG. MPEG software simulation group, MPEG2 decoder source code.

http://www.mpeg.org/MPEG/MSSG.

Pering, T., Burd, T., and Brodersen, R. 2000. Voltage scheduling in the lpARM microprocessor
system. In ISLPED’00: Proceedings of the 2000 International Symposium on Low Power

Electronics and Design. ACM Press, New York, NY, USA, 96–101.

Pillai, P. and Shin, K. G. 2001. Real-time dynamic voltage scaling for low-power embedded

operating systems. In SOSP’01: 18th ACM Symposium on Operating Systems Principles. ACM
Press, New York, NY, USA.

Puschner, P. and Burns, A. 2000. Guest Editorial: A Review of Worst-Case Execution-Time
Analysis. Vol. 18. Kluwer Academic Publishers, Norwell, MA, USA.

Rickard, D., Berger, R., Chan, E., Clegg, B., Patton, S., Anderson, R., Brown, R.,
Sylvester, D., Guthaus, M., Deogun, H., Liu, K. J. R., Pandana, C., and Chandrac-

hoodan, N. 2003. BAE Systems mission specific processor technology. In GOMAC’03: 28th
Annual Government Microcircuit Applications and Critical Technology Conference.

Saputra, H., Kandemir, M., Vijaykrishnan, N., Irwin, M. J., Hu, J. S., Hsu, C.-H., and Kre-

mer, U. 2002. Energy-conscious compilation based on voltage scaling. In LCTES/SCOPES’02:

Proceedings of the joint conference on Languages, compilers and Tools for Embedded Systems.
ACM Press, New York, NY, USA, 2–11.

Shin, D., Kim, J., and Lee., S. 2001. Intra-task voltage scheduling for low-energy hard real-time

application. In IEEE Design and Test of Computers. IEEE Press, Piscataway, NJ, USA.

Simplescalar. 2001. Architecture simulator. http://www.simplescalar.com.

Transmeta. Crusoe processor specification. http://www.transmeta.com.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 ·

Vivancos, E., Healy, C., Mueller, F., and Whalley, D. 2001. Parametric timing analysis. In
LCTES’01: Workshop on Language, Compilers, and Tools for Embedded Systems. ACM Press,

New York, NY, USA.

Vrchoticky, A. 1994. Compilation support for fine-grained execution time analysis. Tech. rep.,

Technical University of Vienna.

Xie, F., Martonosi, M., and Malik, S. 2003. Compile-time dynamic voltage scaling settings:
opportunities and limits. In PLDI’03: Proceedings of the ACM SIGPLAN 2003 conference on

Programming Language Design and Implementation. ACM Press, New York, NY, USA, 49–62.

XScale. 2002. Intel XScale processors. http://developer.intel.com/design/intelxscale.

Received January 2004; accepted May 2005

ACM Journal Name, Vol. V, No. N, Month 20YY.

