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Abstract. Multiple clock domain (MCD) chip design addresses the problem of

the increasing clock skew in the different chip units. MCD design opens the op-

portunity for independent power management in each domain when used in con-

junction with dynamic voltage scaling (DVS). A significant power and energy

improvement has been shown for finer control of each domain voltage rather than

managing the chips single voltage, as in traditional chips with global DVS. How-

ever, published policies in the literature focus on each domain in isolation without

considering the possible inter-domain effects when varying their clock/voltage

from other domain.

In this paper we propose to use a supervised machine learning technique to au-

tomatically derive an integrated CPU-core and on-chip L2-cache DVS policy.

Our policy relies on simple performance counters that can be easily monitored.

We discuss the machine learning process and the implementation issues associ-

ated with our technique. We show that our derived policy improves on traditional

power management techniques used in MCD chips. Our technique saves up to

34% (10% on average) over a DVS techniques that apply independent DVS de-

cisions in each domain. Moreover, energy and energy-delay product results are

within 3% of a near-optimal scheme.

1 Introduction

Dynamic Voltage Scaling (DVS) is a technique that can be used to reduce power con-

sumption in CMOS digital circuits. A lower frequency of operation gives the possibility

that a lower supply voltage can be applied. A convex relationship holds between fre-

quency and power consumption for specific types of circuits and thus a small decrease

of frequency/voltage can have a substantial impact on energy [14].

Due to the continuous increase in the number of transistors and lower feature size,

higher chip densities create a problem for clock synchronization among different chip

computational units. An effective solution to this problem is the use of design tech-

niques for multiple clock domains (MCD) chips. In MCD, a processor chip is divided

into multiple domains. Each domain operates synchronously with its own clock, and

communicates with other domains asynchronously through FIFO queues. MCD design

allows for fine grain power management of each domain especially when using dy-

namic voltage and frequency scaling (DVS). Since each domain has its own clock and



voltage (i.e., independent of the other domains), DVS can be applied in each domain

for an extra level of power management (rather than applying DVS at the chip level).

Power and energy can be reduced with minimal impact on performance by dynamically

reducing the clock speed and voltage in domains with low activity.

Several power management policies have been proposed to incorporate DVS into

MCD chips. The published results show a significant power and energy improvement

over applying DVS to a fully synchronized chip (i.e., with a single master clock) [7].

However, these policies focus on each domain in isolation without considering the pos-

sible effect of varying one domain’s clock speed and voltage on other domains. More-

over, existing techniques rely on online heuristics.

In this work, we are interested in minimizing the overall energy-delay product in a

processor. We are especially interested in the CPU-core and the on-chip L2-cache, as

they consume a large fraction of the total power in current processors. In this paper,

we propose a novel methodology to derive an integrated CPU-core and L2-cache DVS

policy. The integrated policy identifies application phases at runtime and takes corre-

sponding actions (i.e., setting the voltage and frequency of both the processor and the

L2-cache). The policy is derived with a supervised learning process on a representative

training workload. We present and evaluate a policy that optimizes for either energy or

energy-delay product of the entire processor (including the core and caches).

The rest of the paper is organized as follows. We briefly discuss related work in

Section 2. Our problem description is given in Section 3. We describe the supervised

learning technique we use to determine an integrated CPU-core and L2-cache DVS

policy in Section 4, followed by evaluation in Section 5. Finally, we conclude the paper

and discuss future work in Section 6.

2 Related Work

DVS was extensively explored for a variety of systems (from embedded devices to

server farms) and application areas. For embedded systems, DVS techniques save en-

ergy by lowering the voltage and frequency for just-in-time completion of real-time

applications [9, 3, 14]. For personal computers running Linux, DVS is used to lower

the energy consumption while maintaining performance requirements of applications

and good responsiveness of interactive jobs [5]. For web servers, utility-based DVS

schemes adapt the frequency and voltage according to the incoming load [1]. In server

clusters, DVS is used as a local power management scheme aware of Quality-of-Service

constraints [11]

Multiple clock domains (MCD) are proposed as a fine grain processor DVS mech-

anism in [7]. Magklis et al. propose an online power management policy that monitors

queue occupancy of a domain and adapts the domain’s voltage accordingly [8]. For each

domain, the policy computes the change in the average queue length among consecutive

intervals. When queue length increases, the voltage and clock speed are increased. Sim-

ilarly, when queue length decreases, the voltage and clock speed are decreased. How-

ever, this policy does not take into account the cascading effects of changing a domain

voltage on other domains. Another technique by Magklis et al. uses a profile-based ap-

proach to identify program regions that justify reconfiguration [7]. This approach incurs



extra overhead due to profiling and analysis phases for each application under consid-

eration. In contrast, our technique learns the DVS policy with training samples and can

be directly applied to new applications without profiling. Zhu et al present architectural

optimizations for improving power and reducing complexity [17]. Voltage scaling of

off-chip L2 caches for embedded systems is studied in [10].

Sherwood et al. showed that programs have repeatable phase-based run-time behav-

ior over many hardware metrics, such as cache behavior or branch prediction [13]. The

authors also provide a tool, called SimPoint, that automatically identifies and clusters

the phases in a program in order to speed up architectural simulations [12]. Application

phases and predictable behavior are essential to our work as well.

Applying machine learning techniques to reconfigure architectural and compiler set-

tings is relatively a newly explored field. Wildstrom et al. present a policy to alter server

configuration in reaction to workloads [15]. The policy learns to identify preferable

CPU and memory configurations. They showed significant performance benefits using

machine learning policy over any fixed configuration. Cavazos et al. use supervised

learning to predict which application’s basic blocks can benefit from scheduling [2].

The learned policy selects whether to schedule a block or not. The policy achieves most

of the potential performance improvement with significantly less overhead.

3 Problem Description

A typical application goes through phases throughout its execution. An application has

varying cache/memory access patterns and CPU stall patterns. In general, application

phases correspond to loops, and a new phase is entered when control branches to a dif-

ferent code section. Since we are interested in the performance and energy of the CPU-

core and L2-cache, we characterize each code segment in a program with two metrics:

cycles per instruction (CPI) and number of L2 accesses per instruction (L2PI). CPI and

L2PI are selected as indications of the amount of workload in the CPU-core and L2-

cache, respectively. Examples of CPI and L2PI showing different program phases can

be seen in Figure 1 for two benchmarks: gcc and gzip (from the SPEC2000 benchmark

suite).

Intuitively, each program phase has a different requirement and preference toward

a certain “configuration” of the CPU-core and L2-cache frequencies. For example, if a

section of code is CPU bound, it will benefit from running at high CPU frequencies,

and may be insensitive to L2-cache latency. On the other hand, a memory bound phase

benefits the most from reducing the gap between the core and cache performance. This

is precisely the intuition behind our approach. Our goal is to construct an integrated

CPU-core and L2-cache DVS policy that identifies application phases and selects good

frequencies for the CPU-core and L2-cache domains for each section of code.

Clearly, the L2-cache and CPU frequencies can be set independently based on ac-

tivity represented by CPI and L2PI. Thus, we need to answer the following questions

about an integrated policy: (a) Is an integrated CPU-core and L2-cache DVS scheme

better than an independent scheme? (b) What are the mechanisms to be adopted with

respect to these options? (c) What are the frequencies/voltages to be chosen at each

program phase? We attempt to answer these questions throughout this paper.
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Fig. 1. Application phases variation throughout execution.

One approach to building an integrated DVS policy is inspired by control systems. A

phase change can be easily identified from simple performance counters. For example,

a decrease in the CPI (after filtering noise) may suggest that a higher CPU frequency is

needed, or that a higher cache latency is tolerable. A stable system phase is defined as a

small variation (within a threshold) around the average CPI. The goal is then to change

(i.e., increase/decrease) the CPU and/or L2-cache frequencies when a phase shift is

identified.

The problem with a control approach is not identifying application phases, but se-

lecting the correct frequencies on phase changes. The problem is that we can identify the

correct action towards the optimal configuration, but not the optimal configuration it-

self. Using performance counters, we could decide, for example, whether the frequency

of the CPU should be increased or decreased, but not the exact amount. This is because

phase changes are not gradual, but instantaneous, corresponding to a jump to a different

section of code. As soon as the jump is taken and the code enters a new phase (with sta-

ble CPI) there is no more feedback regarding how good the frequency change actually

was, and if it was just a step in the right direction. Typically, there is little correla-

tion between the amount of variation of some performance metric (such as CPI) and the

right frequency. Furthermore, for more complex metrics such as energy or energy-delay

product, even the step towards the correct action (i.e., increase or decrease frequency

by one level) is hard to identify, as it is not trivial to estimate how energy consumption

relates to the performance counters.

4 An Integrated CPU-core and L2-cache DVS policy

Because control-based approaches can fail to identify a good policy for integrated CPU-

core and L2-cache DVS, we propose an approach based on a supervised machine learn-



ing. Our technique derives a policy expressed in the form of propositional rules for a

particular system by analyzing a training program workload. For a given architecture,

our approach analyzes the system to derive a DVS policy for both the CPU-core and

L2-cache to optimize the energy-delay product. The approach describes the state of

the system under different program behaviors and run-time system characteristics. A

program behavior description captures the instruction level parallelism and cache de-

mands of the application and a run-time characteristics description captures program

latencies during a given program phase. The goal is to identify for each possible system

state the correct action. An action determines how the CPU-core and L2-cache frequen-

cies should be adjusted to minimize energy-delay product. The derived policy is thus a

function that maps states to actions that take into account the effect on the energy and

delay.

We first describe the methodology to obtain the training data used to learn the policy

and then our learning approach.

4.1 Obtaining Training Data

It is our hypothesis that for a relatively simple (single issue) processor the system state

that encapsulates the program behavior can be described by simple performance met-

rics. These metrics are the CPI and L2PI, which can be determined from hardware

performance counters. The CPI indicates the CPU utilization; however, it does not by

itself fully describe program phases. For example, a high CPI corresponds either to a

high cache miss ratio, a high cache access latency, or long instruction latencies (such as

division). Adding the L2PI into the state description eliminates the confusion and more

fully describes application behavior. However, the L2PI does not take into account the

effective latency of cache accesses, and to fully characterize the program, this latency

has to be factored into the state description. We describe the effective access latency

as a tuple of CPU-core and L2-cache frequencies. This representation of cache access

latency provides similar information to the effective cache access latency but it also

captures the energy, as energy cost is closely related to the operating frequencies.

Thus, a state is described by four parameters: CPI, L2PI, CPU-core frequency and

L2-cache frequency. CPI and L2PI are continuous variables and need to be discretized.

We choose a number of intervals (discretization bins) for both CPI and L2PI in such a

way that the samples in the training data are distributed evenly. For example, because

of the L2-cache efficiencies in current designs, if most samples have low L2PI, this

would consequently create more L2PI ranges with lower values (i.e., finer granularity

where the density is higher). Let K and L be the number of discrete values of the

CPI and L2PI, respectively. Let M be the number of available CPU frequencies and

N be the number of cache frequencies. The state is a table State[CPIk][L2PIl][i][j],
where CPIk and L2PIl are the discretized values of CPI and L2PI (0 ≤ k < K and

0 ≤ l < L), respectively. i and j are the CPU-core and cache frequencies (0 ≤ i < M
and 0 ≤ j < N ), respectively. For each state we want to determine the action that

minimizes energy-delay product.

The training data used to learn the policy is obtained from training benchmarks

in the following manner. We run all training code at all CPU/cache frequency combi-

nations (MN combinations). A sample is defined as a continuous sequence of code of



fixed number of instructions equal to size. Thus, a set of training benchmarks with a to-

tal of inst instructions and size instructions will generate C = inst/size code samples

for one particular CPU/cache frequency, and MNC samples for all frequency combi-

nations. We denote the samples by Sc
ij = {CPIc

ij, L2PIc
ij, EDc

ij}, where c represents

the code sample (0 ≤ c < C). Each sample contains three values: CPIc
ij, L2PIc

ij , and

EDc
ij , namely, the discretized CPI, discretized L2PI, and energy-delay product of the

sample while running at frequencies i and j.

After collecting these values for all samples, Sc
ij , the correct action for each state is

determined as follows. Since for each section of code all the possible frequency com-

binations are available, the best action can be determined by adding the energy-delay

product of each sample running at the new frequency. Since different sections of code

may have the same state, an array that accumulates all values for the same state are

used: Cum[CPIk][L2PIl][i][j][x][y], where CPIk, L2PIl, i, and j are the state pa-

rameters and x and y are the new CPU and cache frequencies (that is, the action). For

each training sample Sc
ij and each possible action x, y (x is the next CPU frequency, y

is the next cache frequency), we update the arrays as follows:

Cum[CPIc
ij][L2PIc

ij][i][j][x][y] + = EDc
xy (1)

Equation (1) accumulates the energy-delay product for all training samples and all

possible actions. After updating the counters for all samples, the action for each state is

the one that minimizes the actions. After updating the counters for all samples, the ac-

tion for each state, State[CPIk][L2PIl][i][j], is the frequencies 〈x, y〉 that minimizes

Cum[CPIk][L2PIl][i][j][x][y].

4.2 Learning DVS Policy

With the training data, we can use supervised learning to derive the DVS policy. There

are many supervised learning techniques, including logistic classification, neural net-

work, decision tree, and propositional rule. We prefer the propositional rule approach

because it is more compact, more expressive, and more human readable than the other

techniques. Furthermore, propositional rules are easy to implement in hardware. In fact,

we tried all the aforementioned techniques on the training data and the propositional

rule approach had the least error.

We use the Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

learner [4]. The RIPPER algorithm is known to achieve low error rates while being

efficient on large data sets. RIPPER represents the collected states in the form of prepo-

sitional (if-then) rules. Each rule specifies the desirable CPU frequency and cache fre-

quency for the next program interval based on the current state. The learner is based on

the Incremental Reduced Error learning IREP algorithm [6]. RIPPER repeatedly calls

IREP to construct the rule set with low error rates.

IREP iteratively builds its rule set in a greedy fashion; one rule at a time. IREP

works in two phases: growing and pruning phases. First, it randomly partitions the data

set in to two subsets: growing and pruning sets. The rule growth phase constructs an

initial rule set. It starts with an empty clause and then repeatedly adds sub-conditions



to the antecedent. The sub-conditions maximize the coverage of the rule (represents

more states). The stopping criterion for adding sub-conditions is either covering all the

input states or not being able to improve the rule coverage. After growing a rule, the

rule is immediately pruned in the pruning phase. Pruning is an attempt to prevent the

rules from being too specific. IREP chooses the candidate literals for pruning based on

a score which is applied to all the sub-conditions of the antecedent and evaluate the

score using the pruning data. This process is repeated until all states are covered or the

learned rules have very small error.

The resulting rules are generated in the form of: IF <condition> THEN <set freq>,

where condition is a conjunction of one or more of the following sub-conditions.

(CPIcur ≤ CPIk), (CPIcur ≥ CPIk), (L2PIcur ≤ L2PIl), (L2PIcur ≥ L2PIl),

(cf = i), and (mf = j) where CPIcur, L2PIcur, cf and mf are the current CPI, L2PU,

CPU frequency and and cache frequency, respectively. set freq specifies the value of the

next CPU or cache frequencies.

5 Evaluation

In this section, we evaluate the effectiveness of an integrated CPU-core and L2-cache

DVS policy derived with the supervised learning technique from Section 4. We compare

the derived policy to (a) a local clairvoyant solution, which is near optimal for the

energy-delay metric and (b) an independent CPU-core and L2-cache DVS policy [8].

5.1 Experimental Setup

We use the Simplescalar and Wattch architectural simulators with an MCD processor

extension [17]. The MCD extension by Zhu et al. models inter-domain synchronization

events and voltage scaling overheads. We alter the design in [17] to merge their in-

dividual core domains into a single domain and to separate the L2-cache into its own

domain. The simulated frequencies for both domains vary from 250MHz to 1GHz with

250MHz steps. Voltage scales linearly with the frequency in the specified range. Mem-

ory is considered an external domain with a fixed latency.

We evaluate the policy learned with our method using an Alpha-like core config-

uration. We use a small number of functional units and narrow decode/issue widths

to emphasize the CPU-core and L2-cache performance gap. Wider issue and decode

widths combined with more functional units increase ILP are more likely to mask cache

latencies. The processor configuration used in our simulations is listed in Table 1.

To obtain the propositional rules, we use JRip from the WEKA data mining software

package [16]. JRip is an optimized implementation of the RIPPER learner. The rules

are produced based on the data collected for the given architectural configuration. Each

rule specifies the desirable CPU frequency and cache frequency for the next program

interval based on the current state: CPI, L2PI, old CPU and cache frequencies.

An important aspect of using JRip in the WEKA engine is the format of the training

data, which affects the quality of the generated rule set. Although all the state parame-

ters of the training data are discrete (cache and CPU frequencies are discrete in nature,

while L2PI and CPI are discretized into bins), we specify in the input to JRip that all



Table 1. Simulation configurations

Parameter Configuration

Dec./Iss. Width 1/1

dL1 cache 64KB, 2-way

iL1 cache 64KB, 2-way

L2 Cache 1MB DM

L1 lat. 2 cycles

L2 lat. 12 cycles

Int ALUs 2+1 mult/div

FP ALUs 1+1 mult/div

INT Issue Queue 4 entries

FP Issue Queue 4 entries

LS Queue 8

Reorder Buffer 40

parameters are continuous to get a more compact rule set. Using JRip also involves

tuning the parameters for the RIPPER algorithm. For instance, the RIPPER algorithm

needs to partition the training data into a growing set and a pruning set. We choose the

partition size to be two thirds for the growing set. Since RIPPER is a randomized al-

gorithm, different randomization seeds will lead to different results. We experimented

with different values and chose a seed value that reduced the error rate and rule set size

for our input.

We run a mixture of integer and floating point benchmarks from SPEC2000. The

simulations are split into “training” and “evaluation” data. The training data contains the

samples used for deriving the policy (i.e., the mapping of states to actions). The policy

is evaluated on the evaluation data. In particular, for SPEC benchmarks, the “train”

input data set was used for training samples and the “ref input data set” was used for

evaluation runs. For both training and evaluation simulations, we fast forwarded the first

one billion instructions and simulated the following 500M instruction.

We normalize results to a clairvoyant technique. The clairvoyant policy is obtained

by selecting the best CPU-core and L2-cache frequencies for each sample (that is, the

CPU-core and L2-cache frequency combination that minimizes the metric). While the

clairvoyant algorithm is optimal for energy, note that it is only an approximation of

optimal when the metric is the energy-delay product, as minimizing the energy-delay

product for every interval does not necessarily minimize the overall energy-delay prod-

uct for the entire application. We refer to this technique as local-clairvoyant in case

of optimizing energy-delay product and as clairvoyant when optimizing for energy. We

report how far the optimized metric is from the local-clairvoyant and clairvoyant results.

We compare our derived policy versus a base policy proposed in [8]. The base policy

periodically monitors CPI and L2PI to control the CPU-core and L2-cache domains

independently. We use a 500K cycle control period for the periodic voltage changes.



5.2 Experimental Results

Using the methodology from Section 4.1, we derived an integrated DVS policy for

our experimental target system. Figure 5.2 compares the energy-delay product resulting

from using the independent DVS policy versus our integrated DVS policy. Data is nor-

malized to a local-clairvoyant policy. Lower values in Figure 5.2 are better as they are

closer to the local-clairvoyant results. In all applications, we achieve an energy-delay

product lower than the independent DVS policy. Reduction in energy-delay product

over the independent policy is up to 34% in art (10% on average) across all applica-

tion. More interestingly, the energy-delay results from our policy is within 3% of the

local-clairvoyant technique.

In this setting we divided the CPI values into 11 bins (discretization intervals), and

eight L2PI bins. Data from the training phase were able to cover 945 states out of 1408

possible states (11 CPI bins x 8 L2PI bins x 16 frequency combinations).

Mapping the states table into rules using JRip involves an approximation error. The

error rate obtained in our set of rules is 6%. This corresponds to coverage of the training

data by the rules of 94% . This implies that the rules are a good approximation of the

full training data. For the states not covered by the rules, the action selected, though dif-

ferent, is close to the original. In fact, the differences in the optimization metric results

are so negligible that the average error (relative to the full table) across all benchmarks

is just 0.1%.

From these results, we conclude that our learning methodology being aware of the

CPU-core and L2-cache states is effective and able to derive beneficial policies for the

optimization metric (energy-delay product) on our experimental platform.

Fig. 2. Percentage increase in energy-delay relative to local-clairvoyant policy.

6 Conclusions and Future Work

In this work, we proposed the use of two important techniques for controlling the power

and energy consumption in multiple clock domain processors. First, we proposed an in-



tegrated CPU-core and L2-cache DVS scheme that is based on simple performance

counters (cache misses and instructions per cycle). Second, we used a supervised ma-

chine learning technique to derive a DVS policy for a given architecture. Our proposed

scheme learns a frequency and voltage setting policy for scaling both CPU-core and

L2-cache simultaneously. Our policy is within 3% of a locally clairvoyant policy.

In future work, we intend to study the impact of the different architectural con-

figurations on our technique’s accuracy. Also, we will investigate the significance of

varying the learning process parameters (such as training data size, sampling size, and

discretization granularity of both CPI and L2PI) on the results.
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