
Energy-Efficient Real-Time Heterogeneous Server Clusters ∗

Cosmin Rusu, Alexandre Ferreira, Claudio Scordino†, Aaron Watson,

Rami Melhem and Daniel Mossé

Department of Computer Science, University of Pittsburgh

Abstract

With increasing costs of energy consumption and cool-

ing, power management in server clusters has become an

increasingly important design issue. Current clusters for

real-time applications are designed to handle peak loads,

where all servers are fully utilized. In practice, peak load

conditions rarely happen and clusters are most of the time

underutilized. This creates the opportunity for using slower

frequencies, and thus smaller energy consumption, with lit-

tle or no impact on the Quality of Service (QoS), for exam-

ple, performance and timeliness.

In this work we present a cluster-wide QoS-aware tech-

nique that dynamically reconfigures the cluster to reduce

energy consumption during periods of reduced load. More-

over, we also investigate the effects of local QoS-aware

power management using Dynamic Voltage Scaling (DVS).

Since most real-world clusters consist of machines of dif-

ferent kind (in terms of both performance and energy con-

sumption) we focus on heterogeneous clusters.

For validation, we describe and evaluate an implemen-

tation of the proposed scheme using the Apache Webserver

in a small realistic cluster. Our experimental results show

that using our scheme it is possible to save up to 45% of the

total energy consumed by the servers, maintaining average

response times within the specified deadlines and number of

dropped requests within the required amount.

1 Introduction

Until recently, performance had been the main concern

in server farms, but energy consumption has also become

a main concern in such systems. Due to the importance of

customer care service in commercial installations and the

importance of timely responses for embedded server clus-

ters, current clusters are typically designed to handle peak

∗Supported by NFS through the Secure-CITI project (ANI-0325353)

and the Power-Autonomous Networks project (ANI-0121658).
†Claudio Scordino is a PhD student at the University of Pisa, visiting

the University of Pittsburgh.

loads. However, peak load conditions rarely happen in prac-

tice, and clusters are most of the time underutilized. In fact,

their loads often vary significantly depending on the time of

the day or other external factors, therefore the average pro-

cessor use of such systems may be even less than 50% with

respect to their peak capacity [7].

Clusters with high peak power need complex and expen-

sive cooling infrastructures to ensure the proper operation

of the servers. With power densities increasing due to in-

creasing performance demands and tighter packing, proper

cooling becomes even more challenging: fans driving the

cooling system may consume up to 50% of the total sys-

tem power in some commercial servers [16, 18], and man-

ufacturers are facing the problem of building powerful sys-

tems without introducing additional techniques such as liq-

uid cooling. Electricity cost is a significant fraction of the

operation cost of data centers [6]. For example, a Google

10kW rack consumes about 10MWh a month (including

cooling), which is at least 10% of the operation cost [5],

with this fraction likely to increase in the future.

These issues are even more critical in embedded clus-

ters [28], typically untethered devices, in which peak power

has an important impact on the size of the system, while

energy consumption determines the device lifetime. Exam-

ples include satellite systems or other mobile devices with

multiple computing platforms, such as the Mars Rover and

robotics platforms.

Power management (PM) mechanisms can be divided

into two categories: cluster-wide and local [6]. Cluster-

wide mechanisms involve global decisions, such as turning

on and off cluster machines, according to the load. Lo-

cal techniques put unused (or underutilized) resources in

low-power states, for example self-refresh, standby and off

modes for DRAM chips, Dynamic Voltage Scaling (DVS)

and low-power states for the CPU, disk shutdown, etc. A

PM mechanism (local or cluster-wide) is QoS-aware if it

reduces the power consumption while guaranteeing a cer-

tain amount of Quality of Service (QoS), such as average

response times or percentage of deadlines met.

To the best of our knowledge, this is the first Power

Management scheme that is simultaneously (a) cluster-wide

(i.e., turning on and off machines), (b) designed for hetero-

geneity, (c) QoS-aware and power-aware at the local servers

(i.e., deadline-aware), (d) measurement-based (contrary to

theoretical modeling, relying on measurements is the key

to our approach), (e) implementation-oriented, and (f) per-

forming reconfiguration decisions at runtime.

Our scheme is realistic because most clusters have one

or more front-ends, are composed of different kind of ma-

chines, and need both local and cluster-wide QoS-Aware

PM schemes. While the methodology and the algorithms

proposed apply to any kind of cluster, we show their use

in a web server context. Our measurements show a reduc-

tion of energy consumption equal to 17% using only the

local PM, 39% using the On/Off scheme, and 45% using

both schemes. With respect to delays, the local PM added

0.5ms, while On/Off added about 4ms; in all cases, the av-

erage delay was quite small with respect to deadlines.

The remainder of the paper is organized as follows. We

first present related work in Section 2. The cluster model

is given in Section 3. The cluster-wide PM scheme is ex-

plained in Section 4, while the local real-time DVS scheme

is presented in Section 5. Both schemes are then evaluated

in Section 6. In Section 7 we state our conclusions.

2 Related Work

With energy consumption emerging as a key aspect of

cluster computing, much recent research has focused on

PM in server farms. A first characterization of power con-

sumption and workload in real-world webservers was made

in [7]. DVS was proposed as the main technique to re-

duce energy consumption in such systems. DVS and re-

quest batching techniques were further evaluated in [10].

Software peak power control techniques were investigated

in [11]. However, these studies considered only power

consumption of processor and main memory in single-

processor systems.

The problem of cluster configuration (i.e., turning on and

off cluster machines) for homogeneous clusters was first ad-

dressed in [20]. An offline algorithm determines the number

of servers needed for a given load. Cluster reconfiguration

is then performed online by a process running on a server,

using thresholds to prevent too frequent reconfigurations,

even though there is no explicit QoS consideration. The

authors have extended their work to heterogeneous clus-

ters in [14]. Models have been added for throughput and

power consumption estimation. Reconfiguration decisions

are made online based on the precomputed information and

the predicted load. The authors also proposed to add request

types to improve load estimation in [15].

Our work differs from the above previous studies in

the following ways: we consider QoS directly; individual

servers are both power-aware and QoS-aware; we rely on

offline measurements instead of using models; reconfigura-

tion decisions (i.e., number of active servers and load dis-

tribution) are not expensive and are performed online; and

reconfiguration thresholds are based on the time needed to

boot/shutdown a server.

One of the first attempts to combine cluster-wide and lo-

cal PM techniques [9] proposed five different policies com-

bining DVS and cluster configuration. However, the the-

ory behind this work relies on (a) homogeneous clusters,

and cannot be easily extended to heterogeneous machines;

and (b) the often-incorrect assumption that power is a cubic

function of the CPU frequency. Another work proposed to

use the cluster load (instead of the average CPU frequency)

as the criteria for turning on/off machines [28]. However,

this study assumed homogeneous clusters as well. To the

best of our knowledge, this work is the first attempt to com-

bine cluster-wide and local techniques in the context of het-

erogeneous clusters.

In real-time computing, dynamic voltage (and fre-

quency) scaling has been explored to reduce energy con-

sumption. DVS schemes typically focus on minimizing

CPU energy consumption while meeting a performance re-

quirement [29]. DVS work for aperiodic tasks in single

processors includes: offline and online algorithms assum-

ing worst-case execution times [29, 24], automatic DVS for

Linux with distinction between background and interactive

jobs [12], and use of knowledge about the distribution of

job lengths for voltage scaling decisions [17, 21]. However,

these techniques typically aim at reducing the energy con-

sumed only by the CPU [17, 22, 24, 23] and do not take into

account other devices (such as memory, power supplies, or

disk) that contribute with an important fraction to the to-

tal energy consumed by the system. In our model, instead,

servers can put their resources in low-power states, and no

assumption is made about their local PM schemes.

Most related to our local scheme is Sharma et al.’s work

on adaptive algorithms for DVS for a QoS-enabled web

server [26]. Their scheme uses a theoretical utilization

bound derived in [3] to guarantee the QoS of web requests.

However, they take into account only local PM, assuming

that a good load balancing algorithm is used at the front-

end. In that sense, our works are complementary, since we

describe how to achieve such load balancing.

3 Cluster Model

This section introduces the cluster model that we con-

sider (see Figure 1). A front-end machine receives requests

from clients and redirects them to a set of processing nodes,

henceforth referred to as servers. The front-end is not a

processing node and has three main functions: (a) accept-

ing aperiodic requests from clients, (b) distributing the load

to servers, and (c) reconfiguring the cluster (i.e., turning

2

servers on/off) to reduce the global energy consumption

while keeping the overall performance within a prespeci-

fied QoS requirement. After receiving a request, the front-

end communicates to the client to which server the request

must be sent using HTTP redirection [8]. Then, the client

sends its request directly to the server.

In our cluster scheme, each request is an aperiodic task

(i.e., no assumptions are made about task arrival times) and

is assigned a deadline. The specification of the QoS is

system-wide and is, in our case, the percentage of deadlines

met. The way to achieve the soft-real-time properties will

be presented in detail in the next sections.

Each server in the heterogeneous cluster performs the

same service (i.e., all servers can process all requests). No

restriction is imposed regarding any aspect of their com-

putation: process scheduling, CPU performance, memory

speed/bandwidth, disk speed/bandwidth, power consump-

tion, network bandwidth, etc. In addition, servers periodi-

cally inform the front-end about their current load, to aid the

front-end in load distribution and cluster configuration de-

cisions. After a request has been processed by a server, the

result is returned directly to the client, without the front-end

as intermediary.

Note that a more common cluster design is with the

front-end acting as a proxy (i.e., acting as intermediary

between clients and servers). In our webserver example,

choosing one configuration or the other (i.e., proxy versus

no proxy with redirection) is simply a configuration option,

and the proposed scheme in this paper works equally well

with either type of front-end. In our experiments, for high

loads (above 1Gbps), we had to use the no-proxy architec-

ture shown in Figure 1, as a proxy front-end cannot fully

utilize the cluster in our experimental setup (our front-end

has only one GbE network interface card).

When using redirection instead of proxying, the links

and internal references should use the full URL to guaran-

tee that all the requests are sent to the front-end. This way,

redirection works with either the HTTP/1.0 or the HTTP/1.1

protocols. In HTTP/1.1 the client may keep multiple con-

nections open to the front-end and the servers it was redi-

rected to, but all the requests will be sent to the front-end

first.

The aspects related to cluster configuration, PM and load

distribution performed by the front-end will be presented in

detail in the next section. Local PM is performed indepen-

dently by each server, without front-end control, and will be

presented in Section 5.

4 Front-end Power Management

Our proposed front-end follows a very general frame-

work that is applicable to any heterogeneous cluster. To

achieve this goal, we cannot impose any restriction on

Figure 1. Cluster architecture

server characteristics. However, for ease of presentation,

definitions and examples emphasize web server clusters.

4.1 Load Definition and Estimation

The front-end determines the number of active servers to

meet the desired level of QoS while minimizing cluster en-

ergy consumption. The number of servers is computed (of-

fline or online) as a function of the system load. Thus, defin-

ing load correctly is a crucial step. A measure of the load

for clusters is the number of requests received per second,

measured over some recent interval. Clearly, depending on

the kind of service under consideration, other definitions of

load may be more appropriate (such as the bandwidth for a

file server).

At runtime, the front-end needs to correctly estimate (or

observe) the load, in order to make PM decisions and to per-

form load distribution. The load estimation can be further

improved by using feedback from the servers.

As observed in previous work [21, 28, 15], load estima-

tion can be greatly improved by considering request types.

The type of a request may be conveniently determined only

by the header (e.g., the name of the requested file). Notice

that the number of types is a design issue. On one hand,

different types may not be necessary (if the variability of

the time to service a request is low). On the other hand,

each request could be of a different type, leading to an im-

proved estimation but also to a higher overhead (to measure

all different types of requests and update statistics tables).

In the case of a web server there are two main types of

requests, with different computational characteristics: static

and dynamic pages. Static pages reside in server’s memory

and do not require much computation. Dynamic pages, in-

stead, are created on-demand through the use of some exter-

nal language (e.g., Perl or PHP). For this reason, dynamic

pages typically require more computation than static ones.

Consider a generic server, and let Astatic and Adynamic

3

be the average execution times to serve a static and a dy-

namic page, respectively, at the maximum CPU speed. For

example, for one server in our cluster we measured an av-

erage execution time Astatic = 438µs for static pages and

Adynamic = 24.5ms for dynamic pages. On average, the

time needed by the CPU to serve Nstatic static requests

and Ndynamic dynamic requests is thus NstaticAstatic +
NdynamicAdynamic seconds. If the number of requests is

observed over a period of monitor period seconds, then

the load of the machine serving the requests is

Load =
NstaticAstatic + NdynamicAdynamic

monitor period
(1)

Notice that this definition of load assumes a CPU-bound

server. This is normal for most web servers because much

of the data are already in memory [7, 27]. In fact, on all our

machines we have noticed that the bottleneck of the system

was the CPU. However, for systems with different bottle-

necks (e.g., disk I/O or network bandwidth) another defini-

tion of load may be more appropriate. In fact, the definition

of load should account for the bottleneck resource. Note

that even though web requests may exhibit a large variation

in execution times, using the average values (Astatic and

Adynamic) in Equation 1 results in a very accurate load es-

timation. This is because web requests are relatively small

and numerous.

We define the maximum load of a server as the max-

imum number of requests that it can handle meeting the

95% of deadlines. The front-end never directs more than

the maximum load to a server. The cluster load is de-

fined as the sum of the current loads of all active servers.

Therefore, the maximum load that the cluster can handle is

the sum of the maximum loads of all servers. At runtime,

the cluster load (i.e., both variables Nstatic and Ndynamic)

is observed every monitor period seconds. The value of

monitor period is a design issue, related to the tradeoff

between response time and overhead. In our cluster, values

in the order of a few seconds were found suitable.

4.2 Server information

In order to reduce the global power consumption at run-

time, we furnish the front-end with information about the

average power consumption of each server for any differ-

ent value of its load. Servers can reduce their own power

consumption in a number of different ways, such as using

DVS and low-power states for the CPU, self-refresh modes

for memory, stopping disk spinning after some time of idle-

ness, etc. Moreover, each server may use a different OS or a

different scheduling policy (such as a standard round robin,

or a real-time policy to give higher priority to static pages

with respect to dynamic ones). No assumption is made at

the front-end about local PM schemes.

Once the local PM scheme, the OS, and the scheduling

policy have been decided for a server, the power consump-

tion as function of the load and the maximum load can be

determined through simple measurements.

In our experiments, after choosing the local PM scheme

(see Section 5), we measured the average power consump-

tion for a load in 5% increments. Then, we interpolated

the points to have values in 1% increments. We measured

the total power consumed by the whole machines, not only

by their CPUs. In our case recording the average power

consumption for a given load over a period of 10 minutes

was sufficient to obtain a good average. We measured AC

power directly, with a simple power meter with 2% accu-

racy [25]. Hence, the whole process required at most few

hours for each machine. Clearly, identical machines need

not to be measured twice. The curve representing the power

consumption of each server of our cluster is shown in Fig-

ure 2. The last point on each curve represents the maximum

load that meets our QoS specification (i.e., 95% of dead-

lines met), normalized to the fastest machine in the cluster.

The parameters for each machine are reported in Table 2 (on

Page 9).

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

W
)

Load (%)

Green
Silver
Blue

Transmeta

Figure 2. Power consumption vs. load for servers

The information about power consumption of servers can

then be used by the front-end at runtime. Since the front-end

controls the load for each server, and the power consump-

tion of each server for a given load is known, the front-end

has enough information for PM decisions. Notice that the

cooling costs of the room have not been taken into account.

However, since these costs are expected to be proportional

to the AC power drawn, they are automatically reduced by

minimizing cluster power consumption.

We now present all the information (and the corre-

sponding notation) about each server needed at the front-

end level. boot timei and shutdown timei represent the

time to boot and to shutdown server i, including the time

to start and finish the (webserver) process of the server.

max loadi is the maximum load of server i that can satisfy

4

the 95% QoS requirement. off poweri is the power con-

sumed when the server is off (some components, such as

the Wake-On-Lan interface used to power up the machine,

may not be completely off). Finally, power vs loadi is an

array with ⌈ max loadi

load increment
⌉ entries recording the measured

power consumption of server i for each value of the load in

load increment percents (we used 1%). The first entry of

the array denotes the idle power (i.e., no load).

4.3 On/Off Policy

This section describes the key idea behind our cluster-

wide PM scheme. The front-end, besides distributing the

load to servers to minimize global power consumption, de-

termines the cluster configuration by turning on/off servers.

Below is the algorithm used by the front-end to decide

which servers will be turned on/off.

The algorithm turns machines on and off in a specific

order, which is based on the power efficiency of servers

(i.e., the integral of power consumption versus load). In

our case, according to the values of Figure 2, the ordering

for our cluster is: Transmeta, Blue, Silver, Green. In some

situations we may need to change the order at runtime, as

explained later.

The front-end turns on servers as the cluster load in-

creases. However, since the boot time is not negligi-

ble, we need to turn machines on before they are actually

needed. For this reason, the front-end maintains a variable,

called max load increase, which specifies the maximum

load variation that the cluster is prepared to sustain during

monitor period. This is essentially the maximum slope of

the load characterization for the cluster.
The on/off policy relies on two tables computed of-

fline. The first table, called mandatory servers, keeps
the load at which to turn servers on and is used to de-
termine the lowest number of servers needed at a certain
load to satisfy the QoS requirement. For example, con-
sider a cluster with three servers having maximum loads
max load0 = 0.5, max load1 = 1.5 and max load2 =
1.0, respectively. Suppose that monitor period is 5 sec-
onds, max load increase is equal to 0.05, and the boot
time is 10 seconds for every machine. Ideally, we need only
one server when the cluster load is less than 0.5, two servers
when load is between 0.5 and 2, and all servers when load
is higher than 2. However, if we account for the time to
boot a new machine and we suppose that the cluster load
is checked periodically every monitor period seconds,
the table becomes mandatory servers = {0, 0.35, 1.85}.
Thus, the first server is always on, whereas the second and
third servers are turned on when the cluster load reaches
0.35 and 1.85, respectively. In fact, if we consider the boot
time of a new server, we have to account for a potential
load increase equal to boot time

monitor period
max load increase.

Moreover, if we suppose that the load is checked periodi-
cally every monitor period seconds, we have to introduce

an additional interval of time to account for the error when
measuring the current load. In general, server i is turned on
when the cluster load reaches

i−1∑

j=0

max loadj − (
boot timei

monitor period
+ 1)max load increase

The second table, called power servers, precomputes

the number of servers needed to minimize the power con-

sumption for a given load. Unlike the previous table, this

table is computed considering the power consumption of

servers, and is used to distribute the current load among

active servers. For a given value of N , we compute the

power consumption of the cluster as follows. We start con-

sidering a load equal to zero, and we increase its value

in load increment increments. For any increment of the

load, we evaluate which server can handle it in order to min-

imize the overall energy consumption.

To determine the load at which N servers become more

power efficient than N − 1, we follow this procedure con-

sidering both cases of N − 1 and N machines, respectively.

The load at which N servers consume less power than N−1
servers is the value after which the N th server is turned on.

The server to be turned on is the next one according to the

power efficiency order.

The complexity of computing the two tables is

O(N) (where N is the number of servers) for

mandatory servers and O(NM) for power servers,

where M =
∑N

i=1
⌈ max loadi

load increment
⌉. In our cluster, the

time to compute these two tables was less than 1msec,

which was negligible compared to monitor period (that is

in the range of seconds). Thus, this computation can also

be performed online. For example, a new ordering of the

servers and an online recalculation of the tables become

necessary when a server crashes.

A high-level view of the front-end on/off policy is

presented in Figure 3. Every monitor period seconds

the load is estimated according to Equation 1, then the

request counters are reset. The number of mandatory

servers Nmandatory is determined by a lookup in the

mandatory servers table. If Nmandatory is higher than

the current number of active servers Ncurrent, all needed

servers are immediately turned on.

Each server can be in one of the following states: Off,

Boot, On, or Shutdown. After receiving the “boot” com-

mand (such as a Wake-On-Lan packet), the server i moves

from the Off to the Boot state. It stays in this state for

boot timei seconds (i.e., until it starts the server process),

then informs the front-end that it is available for processing,

moving to the On state. When server i is shutdown, it stays

in the Shutdown state for shutdown timei seconds, after

that the front-end changes its state to Off.

The variable Cmd in Figure 3 can have three different

values: None, Boot or Shutdown. This variable allows to

5

1 Every monitor period seconds

1.1 Compute the load according to Equation 1

1.2 Reset the counters:

Nstatic = 0 Ndynamic = 0
1.3 Compute the minimum number of servers that can

handle the load:

Nmandatory=mandatory servers(Load)

1.4 if (Nmandatory > Ncurrent)
turn on the servers

set Ncurrent = Nmandatory

return

1.5 Compute the number of servers needed to reduce

the energy consumption:

Npower = power servers(Load)
1.6 if (Npower > Ncurrent) and (Cmd 6= Boot)

Set Cmd = Boot

Find the next server i to boot

Set Ncurrent = Ncurrent + 1
return

1.7 if (Npower < Ncurrent) and (Cmd 6= Shut-

down)

Set Cmd = Shutdown

Find the next server i to shutdown

Set Ncurrent = Ncurrent − 1
return

2 If Cmd=Boot for a period of time equal to time booti

2.1 Turn on server i

2.2 Set Cmd = None

2.3 return

3 If Cmd=Shutdown for a period of time equal to

time booti + time shutdowni

3.1 Turn off server i

3.2 Set Cmd = None

3.3 return

Figure 3. On/Off policy

describe the use of thresholds when turning on/off servers.

If no server is in transition (i.e., all servers are in the On

or Off states) a server may be turned on or off, as decided

after a lookup in the power servers table. To be conser-

vative, only one server at a time is turned on or off. Server

i is turned off if the system is in state Cmd = Shutdown
for at least time shutdowni + time booti consecutive sec-

onds, which is the rent-to-own threshold (see Step 3, Fig-

ure 3). Similarly, server i is turned on if Cmd = Boot

for time booti consecutive seconds (see Step 2, Figure 3).

Notice that these thresholds do not apply to the mandatory

servers, which are started immediately. The running time of

the online part of the algorithm (every monitor period sec-

onds) is negligible because it is in the microsecond range;

the complexity is O(N), but can be improved to O(1) by

increasing the table size from N to M (that is, storing all

entries in an array).

For convex and linear power functions, tables

mandatory servers and power servers contain the

optimal transition points (in the discrete space; for continu-

ous space, see [23]). In practice, however, power functions

may have concave regions. This means that a server with an

abrupt power increase at some load x may not be allocated

more than x load, even though the power may become flat

above x + ǫ, making it a good target for load allocation. A

simple fix to the problem is to consider the average power

consumption over a larger interval, rather than the exact

value at each load. This effectively results in smoothing

the power functions. In our case, although the measured

power functions have concave regions, we have found that

no smoothing was necessary.

4.4 Request Distribution Policy

The front-end distributes the incoming requests to a

subset of the current servers that are in the On state.

load allocation is a table containing the estimated load

allocated to each server and is computed with the same

procedure used to determine the power servers table, in

O(MN) time. The load allocation is computed every

monitor period seconds, after the on/off decisions.

Another table, called load accumulated, stores the ac-

cumulated load of each server, and is reset after computing

load allocation. The server i with the minimum weight

wi =
load accumulatedi

load allocationi

(2)

gets the next request. Notice that wi can be higher than

1 when the load is underestimated. The server that re-

ceives the request updates its accumulated load (and thus in-

creases its weight), by adding Astatic/monitor period or

Adynamic/monitor period, depending on the request type.

The complexity to find the server with minimum weight is

O(N) with a straightforward implementation, but can be

improved to O(logN) using a tree.

4.5 Implementation Issues

We implemented our PM scheme in the Apache 1.3.33

Web server [4]. We created an Apache module, called

mod on off, which makes on/off decisions. Moreover, we

extended an existing module, mod backhand [2], to support

our distribution policy.

mod backhand is a module responsible for load distri-

bution in Apache clusters. It allows servers to exchange

information about their current usage of resources. It also

provides a set of candidacy functions to forward requests

from an overloaded server to other less utilized servers. Ex-

amples of such functions are byLoad, which selects as can-

didate the least loaded server, and byCost, which considers

a cost for each request.

6

We added a new candidacy function, called byEnergy, to

implement our request distribution policy. Notice that only

front-end machines use this function. In addition, servers

provide some feedback about their current real-time utiliza-

tion (as explained in Section 5) to front-ends. We used this

feedback to prevent the overloading of the servers. In partic-

ular, the server with the minimum wi is selected, providing

that it is not overloaded.

The mod on off module communicates with

mod backhand through shared memory. On initializa-

tion, mod on off acquires server information and computes

both mandatory servers and power servers tables.

mod on off executes periodically every monitor period
seconds. On each invocation it performs the following

tasks: (a) computes the current load based on the counters

Nstatic and Ndynamic (that are incremented in the “Apache

post read request” phase), (b) looks up in the table to

determine the number of servers needed for the next period,

(c) computes the load allocation table for the active

servers (not shown in Figure 3), (d) turns on (by send-

ing Wake-On-Lan packets) and off (by invoking special

CGI scripts) servers, and finally (e) resets the counters

Nstatic, Ndynamic and load accumulated. In addition,

it displays at runtime the estimated power and energy

consumption of each server, based on the power vs load
and load accumulated tables.

5 Server Power Management

In addition to front-end directed cluster reconfigurations

(i.e., turning on/off machines), the servers perform their

own local PM to reduce power consumption of unutilized or

underutilized resources. We present an example of a QoS-

aware DVS scheme and we discuss an implementation us-

ing the Apache Webserver [4].

5.1 Local DVS Policy

We rely on a local real-time scheme, where each request

is an aperiodic task and is assigned a deadline. Each request

type [21, 28, 15] has a deadline to allow for more accurate

load estimation.

We consider a soft real-time system, in which the sched-

ule is not generated by a real-time scheduler and the com-

putation time Ci is the average execution time (i.e., Astatic

or Adynamic), not the worst-case. Let Di be the time re-

maining to the deadline, then the real-time utilization of a

server is defined as U =
∑

i
Ci

Di

.

If the CPU is the bottleneck of the system (as in our

case), the CPU frequency to handle this rate of requests is

Ufmax, where fmax is the highest possible frequency of

the CPU. Each server periodically computes its utilization

U and sets the CPU frequency to the closest value higher

than Ufmax.

Note that DVS architectures may have inefficient oper-

ating frequencies [22], which exist when there are higher

frequencies that consume less energy. A simple online

tool for inefficient frequency elimination has been provided

in [19]. Removal of inefficient operating frequencies is the

first step in any DVS scheme. This was not necessary in our

servers, because surprisingly all frequencies were efficient,

although we had a different experience with other systems

we tested [28].

5.2 Implementation Issues

We implemented an Apache module, called

mod cpufreq, responsible for CPU speed settings at

the user level. On Athlon machines, the CPU speed was

changed by writing to the /sys/ file system, using the

CPUfreq interface [1]. On the Transmeta machine the

speed was changed by writing to a model-specific register

(MSR). Since the register cannot be written from user-level

we added two system calls for setting and reading its

value [13]. After detecting the available frequencies, our

module creates an Apache process that periodically sets the

CPU frequency according to the current value of U . We

chose as period 10ms to match any default Linux kernel;

the measured overhead for changing voltage/frequency in

the Athlon64 machines is approximately 50µs.

To compute U , the module needs to know the type (i.e.,

static or dynamic) and the arrival time of each request.

At every request arrival (called “Apache post-read request”

phase), the arrival time and the deadline are recorded with

µs accuracy and stored in a hash table in shared memory.

The request type is determined from the name of the re-

quested file. Thus, a single queue traversal is necessary to

compute U . In fact, the current value of U depends on all

queued requests, therefore the complexity is O(R) where

R is the number of requests queued; the overhead is neg-

ligible. Requests are removed from the queue after being

served (called ”Apache logging request” phase).

A problem we encountered during the implementation

was that our scheme worked very well except for fast ma-

chines serving a large amount of small static pages. In this

case, those machines were not increasing their speed, re-

sulting in a large number of dropped requests. A further

investigation revealed that the value of U was close to zero.

We did not see this phenomenon on slower machines (such

as Transmeta) nor using bigger pages. The problem was that

the requests were served too fast (in approximately 150 µs).

Such short requests were queued, served, and removed from

the queue before other requests were added to the queue.

Thus, at any time only a few requests (usually just one) was

in the queue, and when mod cpufreq recomputed the utiliza-

7

tion, it resulted in an underestimation of U . In other words,

even though the requests were received and queued at the

OS-level, Apache was not able to see them because it is a

user-level server and it has no information about requests

stored at the OS level. We called this problem the “short

request overload problem” phenomenon.
A simple fix was to compute the utilization also over a

recent interval of time interval size (we used 200ms):

Urecent =
(NstaticAstatic + NdynamicAdynamic)

interval size

We would like to keep the server utilization Urecent be-

low a certain threshold (we used threshold = 80%). The

minimum frequency that does that is Urecent

threshold
fmax . Thus,

our module sets the CPU speed to max(U, Urecent

threshold
)fmax .

Note that Sharma et al.’s work with a kernel webserver

(kHTTPd [26]) aware of small requests at the OS-level has

a nice synergy with our approach and could be used in lieu

of our scheme. Exploring the composition of our cluster

configuration and Sharma’s (or other similar DVS) work is

left for future work. The problem with including such work

in our scheme is exactly the reason why the authors discon-

tinued the development of kHTTPd: the difficulty of main-

taining, developing and debugging a kernel-level server.

6 Evaluation

To evaluate our QoS-aware PM scheme we used a small

cluster composed by one front-end and 4 different servers.

Every machine ran Gentoo Linux 2.6 as operating system

and Apache 1.3.33 servers. The parameters of the machines

are shown in Tables 1 and 2.

The cluster has been tested using 2 clients connected

to the cluster with a GbE interface and Gbps switch; the

clients generate up to 3,186 requests per second, which cor-

responds to a total maximum cluster load equal to 2.95 (all

loads were normalized to that of Silver machine). A total

cluster load of 0.05 (or 5%) corresponds on average to 54 re-

quests/second. Considering request types, however, greatly

improves the prediction, as 54 requests/second may corre-

spond to a load ranging from 0.02 (if Ndynamic = 0) to

1.32 (if Nstatic = 0). We assigned deadlines of 50ms and

200ms for requests of static and dynamic pages.

We set max load increase = 0.005, therefore we had

mandatory servers = {0.000, 0.062, 1.012, 2.012} and

power servers = {0.000, 0.100, 1.050, 2.040}.

6.1 DVS policy

As first experiment, we evaluated the effectiveness of our

local DVS scheme. We compared our mod cpufreq module

with the default PM in Linux (i.e., HALT instruction when

idle) and with Sharma’s DVS scheme for QoS-aware web

Transmeta
Frequency (MHz) 333 400 533 667 733

Idle (W) 8 8.5 8.5 9 9

Busy (W) 9 9.5 10.5 12 12.5

Blue
Frequency (MHz) 800 1800 2000 2200

Idle (W) 68 73 76 80.5

Busy (W) 74.5 93.5 105.5 120.5

Silver
Frequency (MHz) 1000 1800 2000 2200 2400

Idle (W) 70 74.5 78.5 83.5 89.5

Busy (W) 80.5 92.5 103.5 119.5 140.5

Green
Frequency (MHz) 1000 1800 2000

Idle (W) 68 79 87

Busy (W) 77 108 131

Table 1. Idle/busy power consumption (in Watts) for each

server at each frequency

servers proposed in [26] (which we implemented at user

level in our mod cpufreq module). This scheme adjusts the

speed of the processor to the minimum speed that maintains

a quantity called synthetic utilization below the theoretical

utilization bound (Ubound = 58.6%) that ensures that all

deadlines are met [3].

 60

 70

 80

 90

 100

 110

 120

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 p

o
w

e
r

c
o

n
s
u

m
p

ti
o

n
 (

W
)

Load (%)

Default Linux
Sharma’s scheme

Our scheme

Figure 4. Comparison of DVS policies

The measured power consumption of each scheme on the

Blue machine is shown as function of the load in Figure 4.

The graph shows that our scheme outperforms the other

schemes, especially for the mid-range load values. Higher

savings are obtained on machines with a more convex power

function (the power function of the Blue machine is rather

linear — see Figure 2). In fact, for a rate of 300 requests/sec

(approximately 28% load) the average processor frequency

is 1.25GHz using our scheme and 1.5GHz using Sharma’s

scheme, but the amount of energy saved is only 3%. Impor-

tantly, we observed that both schemes maintained the QoS

level above 99% even at the highest load.

8

Machine Processor RAM Cache Wake-On-Lan Boot Shutdown Off Max

name model memory size support time time power load

size (sec) (sec) (W)

Transmeta Transmeta Crusoe TM5800 256 MB 512 KB 100 60 1 0.10

Blue AMD Athlon 64 Mobile 3400+ 1GB 1 MB
√

33 11 8 0.95

Silver AMD Athlon 64 3400+ 1GB 512 KB
√

33 12 8 1.00

Green AMD Athlon 64 3000+ 1GB 512 KB
√

33 11 8 0.90

Front-end AMD Athlon 64 Mobile 3400+ 1GB 1 MB Not applicable

Table 2. Parameters of the machines of the cluster

6.2 Overall scheme

To evaluate the overall scheme, we performed many ex-

periments with and without the cluster-wide PM scheme

(On/Off scheme), and with and without the local PM

scheme (DVS scheme). For each load value, we measured

the power consumption of the entire machine (not only

CPU) for each scheme independently (see Figure 5). For

fairness, we used the load balancing policy in Section 4.4

for all the schemes.

The On/Off policy allows a striking reduction of the en-

ergy consumption for low values of the load, because (ob-

viously!) it allows to turn off unutilized servers. In Fig-

ure 5 we can see that when load = 0, the cluster consump-

tion is around 32W because each Athlon server consumes

8W when in the Off state, and the Transmeta also consumes

8W when in the On state. The DVS technique, instead, has

its biggest impact whenever a new server is turned on, since

not all active servers are fully utilized. However, its im-

portance decreases as the utilization of the active servers

increases. For high values of the load (in our case, at 70%

or higher) all servers are on, therefore the On/Off technique

does not allow to reduce energy consumption. In those sit-

uations, however, there is still room for the DVS technique,

that becomes more important than the On/Off technique.

The energy consumption of all servers without any

power management scheme was 1.32KWh. On average,

we measured energy savings of 17% using DVS, 39% using

On/Off, and 45% using both schemes.

It is worth noting that the front-end estimation of the to-

tal energy consumed when using DVS was extremely ac-

curate: the difference from the actual values was less than

1%. For example, when using the on-off scheme, the mea-

sured value was 0.72KWh, while the front-end estimated

value was 0.725KWh (the resolution of our power/energy

meter [25] is 0.01KWh).

To measure the impact of cluster-wide and local PM

schemes in the loss of QoS, we ran many four-hour ex-

periments with workloads derived from actual webserver

traces, and generated with the same shape of statistics taken

from our cs.pitt.edu domain (see Table 3). The average de-

lay (observed at the client side) without any PM scheme

was 8.29ms; a small response time is due to all machines

being on at all times, and running at maximum frequency.

Adding DVS (local PM) had a very small impact on the de-

lay, with the average delay measured at 8.77ms. However,

with On/Off scheme, we measured an average delay equal

to 12.29ms without DVS and 12.83ms with DVS. In both

cases, the average delay was not higher than 50% of the

no-PM delay and was quite small with respect to deadlines.

Request type % Request type %

4 ms (CGI) 0.10 6-7 KB (html) 2.84

7 ms (CGI) 0.71 7-8 KB (html) 1.58

23 ms (CGI) 0.98 8-9 KB (html) 1.80

40 ms (CGI) 0.23 9-10 KB (html) 1.87

200 ms (CGI) 0.06 10-20 KB (html) 10.74

0-1 KB (html) 37.78 20-30 KB (html) 3.62

1-2 KB (html) 8.86 30-40 KB (html) 1.17

2-3 KB (html) 6.56 40-50 KB (html) 0.67

3-4 KB (html) 4.58 50-60 KB (html) 0.80

4-5 KB (html) 4.94 60-70 KB (html) 1.46

5-6 KB (html) 3.38 above 70 KB (html) 5.27

Table 3. Web server statistics: percentage of accesses,

approximate size (for static pages), and running time (for

dynamic pages)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

A
v
e

ra
g

e
 p

o
w

e
r

c
o

n
s
u

m
p

ti
o

n
 (

W
)

Load (%)

None
DVS

On/Off
On/Off + DVS

Figure 5. Evaluation of cluster-wide and local techniques

7 Conclusions and Future Work

We have presented a new QoS-aware power manage-

ment scheme that combines cluster-wide (On/Off) and lo-

cal (DVS) power management techniques in the context of

9

heterogeneous clusters. We have also described and evalu-

ated an implementation of the proposed scheme using the

Apache Webserver in a small realistic cluster.

Our experimental results show that: (a) our load estima-

tion is very accurate; (b) the On/Off policy allows a striking

reduction of the power consumption; (c) DVS is very im-

portant whenever a new server is turned on or, as shown

before, when all servers are on; (d) as expected, for high

values of the load the On/Off technique does not help to

reduce energy consumption but there is still room for DVS.

Using both techniques we saved up to 45% of the total

energy with a limited loss in terms of QoS. In the worst

case, the average delay was increased by at most 50%, and

was still very small when compared to the deadlines.

As immediate future work we plan to investigate the use

of both suspend-to-disk and suspend-to-RAM techniques to

reduce the time to boot and shutdown a server. We also

plan an integration of our cluster PM schemes with other

grid-like or cluster (e.g., Condor) load balancing schemes.

References

[1] Linux kernel CPUfreq subsystem. http:

//www.kernel.org/pub/linux/utils/

kernel/cpufreq/cpufreq.html.

[2] The Backhand Project. http://www.backhand.org/.

[3] T. F. Abdelzaher and C. Lu. Schedulability Analysis and

Utilization Bounds for Highly Scalable Real-Time Services.

In Proceedings of the 7th IEEE Real-Time Technology and

Applications Symposium (RTAS’01), Taiwan, June 2001.

[4] Apache. HTTP Server Project. http://httpd.

apache.org/.

[5] L. A. Barroso, J. Dean, and U. Holzle. Web Search for

a Planet: The Google Cluster Architecture. IEEE Micro,

23(2):22–28, 2003.

[6] R. Bianchini and R. Rajamony. Power and Energy Manage-

ment for Server Systems. Computer, 37(11):68–74, 2004.

[7] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Le-

furgy, C. McDowell, and R. Rajamony. The case for power

management in web servers. Kluwer Academic Publishers,

2002.

[8] V. Cardellini, M. Colajanni, and P. S. Yu. Redirection Algo-

rithms for Load Sharing in Distributed Web-server Systems.

In 19th IEEE International Conference on Distributed Com-

puting Systems (ICDCS’99), Austin, TX, June 1999.

[9] M. Elnozahy, M. Kistler, and R. Rajamony. Energy-Efficient

Server Clusters. In Workshop on Power-Aware Computer

Systems (PACS’02), 2002.

[10] M. Elnozahy, M. Kistler, and R. Rajamony. Energy Conser-

vation Policies for Web Servers. In 4th USENIX Symposium

on Internet Technologies and Systems, Seattle, Mar. 2003.

[11] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A

performance-conserving approach for reducing peak power

consumption in server systems. In International Conference

on Supercomputing (ICS’05), pages 293–302, Cambridge,

Massachusetts, June 2005.

[12] K. Flautner and T. Mudge. Vertigo: Automatic

Performance-Setting for Linux. In 5th Symposium on Op-

erating Systems Design and Implementation, Dec. 2002.
[13] S. Gleason. Power Aware Operating Systems: Task Spe-

cific CPU Throttling. http://www.cs.pitt.edu/

PARTS/implementation/.
[14] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bian-

chini. Self-Configuring Heterogeneous Server Clusters. In

Workshop on Compilers and Operating Systems for Low

Power (COLP’03), September 2003.
[15] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bian-

chini. Energy Conservation in Heterogeneous Server Clus-

ters. In 10th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, June 2005.
[16] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,

and T. W. Keller. Energy management for commercial

servers. IEEE Computer, 36(12):39–48, Dec. 2003.
[17] J. Lorch and A. Smith. Improving Dynamic Voltage Scaling

Algorithms with PACE. In ACM SIGMETRICS, June 2001.
[18] J. Moore, R. Sharma, R. Shih, J. Chase, C. Patel, and

P. Ranganathan. Going Beyond CPUs: The Potential of

Temperature-Aware Data Center Architectures. In 1st Work-

shop on Temperature-Aware Computer Systems, 2004.
[19] PARTS. Power Efficiency Test. http://www.cs.

pitt.edu/PARTS/demos/efficient.
[20] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load

Balancing and Unbalancing for Power and Performance in

Cluster-Based Systems. In Workshop on Compilers and Op-

erating Systems for Low Power (COLP’01), Sept 2001.
[21] C. Rusu, R. Xu, R. Melhem, and D. Mossé. Energy-Efficient

Policies for Request-Driven Soft Real-Time Systems. In

Euromicro Conference on Real-Time Systems (ECRTS’04),

Catania, Italy, July 2004.
[22] S. Saewong and R. Rajkumar. Practical Voltage-Scaling

for Fixed-Priority RT-Systems. In Proceedings of the 9th

IEEE Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS’03), May 2003.
[23] C. Scordino and E. Bini. Optimal Speed Assignment for

Probabilistic Execution Times. In 2nd Workshop on Power-

Aware Real-Time Computing (PARC’05), NJ, Sept. 2005.
[24] C. Scordino and G. Lipari. Using resource reservation tech-

niques for power-aware scheduling. In 4th ACM Interna-

tional Conference on Embedded Software, Pisa, Italy, 2004.
[25] Seasonic. Power Angel. http://www.seasonicusa.

com/products.php?lineId=8.
[26] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and

Z. Liu. Power-aware QoS Management in Web Servers. In

Proceedings of the 24th IEEE Real-Time Systems Sympo-

sium (RTSS’03), Cancun, Mexico, December 2003.
[27] M. Xiong, S. Han, and K.-Y. Lam. A Deferrable Schedul-

ing Algorithm for Real-Time Transactions Maintaining Data

Freshness. In IEEE Real-Time System Symposium, Miami,

Florida, Dec. 2005.
[28] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé. Energy-

Efficient Policies for Embedded Clusters. In ACM SIG-

PLAN/SIGBED Conference on Languages, Compilers, and

Tools for Embedded Systems (LCTES’05), June 2005.
[29] F. Yao, A. Demers, and S.Shankar. A Scheduling Model

for Reduced CPU Energy. In IEEE Annual Foundations of

Computer Science, pages 374–382, 1995.

10

