Integrated CPU and L2 Cache Voltage Scaling using
Machine Learning

Nevine AbouGhazaleh Alexandre Ferreira
Bruce Childers

Daniel Mossé

Ru{bin Frank Liberato
Rami Melhem

Cosmin Rusu

Department of Computer Science
University of Pittsburg
Pittsburgh, PA 15260

{nevine, apf75, rusu, xruibin, frank, childers, mosse, melhem}@cs.pitt.edu

Abstract

Embedded systems serve an emerging and diverse set ofapplic
tions. As a result, more computational and storage cagiabikre
added to accommodate ever more demanding applicationer-Unf
tunately, adding more resources typically comes on theresgef
higher energy costs. New chip design with Multiple Clock Cxons
(MCD) opens the opportunity for fine-grain power management
within the processor chip. When used with dynamic voltagdisg
(DVS), we can control the voltage and power of each domaie-ind
pendently. A significant power and energy improvement hanbe
shown when using MCD design in comparison to managing a sin-
gle voltage domain for the whole chip, as in traditional shigith
global DVS.

In this paper, we propose PACSL a Power-Aware Compiler-
based approach using Supervised Learning. PACSL autaatigtic
derives an integrated CPU-core and on-chip L2 cache DVS pol-
icy tailored to a specific system and workload. Our approassu
supervised machine learning to discover a policy, whickesebn
monitoring a few performance counters. We present our gabro
detailing the role of a compiler in constructing a custom pow
management policy. We also discuss some implementatioesss
associated with our technique. We show that PACSL improwves o
traditional power management techniques that are usedierge
MCD chips. Our technigue saves 22% on average (up to 46%) in
energy-delay product over a DVS technique that appliespaede

dent DVS decisions in each domain. Compared to no-power man-

agement, our technique improves energy-delay product By @6
average (up to 64%).

Categories and Subject DescriptorsC.0 [Computer Systems Or-
ganizatior): General—Hardware/software interfacesD.3.4 [Pro-
gramming LanguagésProcessors-Run-time environment

General Terms Performance, Management, Design

Keywords Power management, Integrated DVS policy, Machine
learning, Multiple Clock Domains

Permission to make digital or hard copies of all or part o§ thrk for personal or
classroom use is granted without fee provided that copiesairmade or distributed
for profit or commercial advantage and that copies bear thtis@and the full citation
on the first page. To copy otherwise, to republish, to poseoness or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES'07 June 13-16,2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

1. Introduction

Dynamic Voltage Scaling (DVS) is a technique that can be tsed
reduce power consumption in CMOS digital circuits. A lowako
frequency allows the use of low supply voltage. A convextiela
ship holds between frequency and power consumption forifipec
types of circuits and thus a small decrease of frequendgfyelcan
have a substantial impact on energy [15].

Embedded systems are evolving to accommodate a new and di-
verse set of applications. Such applications require aszd pro-
cessor computational power, larger storage capacityargel op-
eration time. The advancementin processor technologyes¢iae
opportunity for embedded processors to approach the pesfoce
of general purpose processors by adopting performancéaswiu
like large caches, superscalar, and multiple cores. Howaudept-
ing most of these solutions leads to more power consumgtinn.
fortunately, with the plethora of embedded system desigdstzeir
applications, itis hard to construct a power managemeityptiiat
can be directly applied to a variety of embedded systems.

Due to the continuous increase in the number of transistors
and decrease in feature size, higher chip densities crepteba
lem for clock synchronization among chip computationatsirn
effective solution to this problem is the use of design téghas
for Multiple Clock Domains (MCD) chips. In MCD, a processor
chip is divided into multiple domains. Each domain operatgs
chronously with its own clock, and communicates with other d
mains asynchronously through FIFO queues. MCD design allow
for fine grain power management of each domain, especialynwh
using dynamic voltage and frequency scaling (DVS). Sinaghea
domain has its own clock and voltage (i.e., independentobther
domains), DVS can be applied in each domain for an extra tevel
power management (rather than applying DVS at the chip)level
Power and energy can be reduced with minimal impact on perfor
mance by dynamically reducing the clock speed and voltage-in
mains with low activity.

In this work, we automatically generate a custom power man-
agement policy for embedded processors. We are espedaially i
terested in managing the power of the CPU-core and the gn-chi
L2 cache, as they consume a large fraction of the total power i
current processors. We propose a Power-Aware Compilerebas
approach using Supervised LearnifACSL PACSL provides a
novel methodology to automatically derive an integrated)&@®re
and L2 cache DVS policy. The derived policy dynamically adap
the domains’ voltages and frequencies to current workloaani
MCD processor. Our approach identifies application phasesa
time and takes corresponding actions (i.e., setting theageland
frequency of both the processor and the L2 cache).

system to represent a program behavior. The figure shows: cycles per
description instruction (CPI), number of L2 accesses per instructio2R(l),
and memory accesses per instruction (MPI). CPI and L2PI are

objective tra.lnln.g | selected as indications of the amount of workload in the CBte-
applications and L2 cache, respectively. On the other hand, L2P1 and MR!I ca
be used to indicate the idleness in the CPU core and the LZcach
policy domains, respectively.
Generator Intuitively, each program phase has a different requirdraad
preference toward a certain “configuration” of the CPU-canel
L2 cache frequencies. For example, if a section of code is CPU
bound, it will benefit from running at high CPU frequenciesda
Voltage | DVS polic performance may be insensitive to L2 cache latency (as with most phases in
Settings policy monitors equakein Figure 2). On the other hand, a memory bound phase
benefits the most from reducing the gap between the core and
Figure 1. Information flow in PACSL cache performance (as with most phasestin Figure 2). Typical

applications have alternate CPU and memory bound phases (as
shown ingzipin Figure 2). This is precisely the intuition behind

In PACSL, the automated generation of power management our approach. Our goal is to construct an integrated CP¥-and

policies relies on given system settings. Our special-psegom- L2 cach_e DVS pollcy_that identifies application phases grlmb@
piler takes as an input a state description of the systenghini appropriate frequencies for the CPU and L2 cache domairesftir
cludes the architectural and application behaviors, araptimiza- code section.

tion criterion. Based on this input, it generates a custolicyéor o)

this particular system. PACSL uses supervised learningga®on 2.2 Optimization metrics

a set of representative training workload to derive the D'gficp. The “best frequencies” to use for the CPU-core and L2 cache do
Figure 1 shows the inputs and outputs in our approach. We eval mains are defined in terms of some optimization metric. These
uate our approach on different processor configurationcand three natural metrics: energy, performance, and enerigy-geod-

pare its performance against a well known online DVS poli@tt uct. When the metric is energy, it would seem that the mosggre
manages each domain voltage independently. Results shéw 22 efficient frequencies are the minimum ones, due to the wedlakn
average (up to 46%) improvement in energy-delay produatave quadratic relationship between frequency and power [1jvéler,
DVS technique that apply independent DVS decisions in eaeh d when looking at the system as a whole, this is no longer trlie [4
main. Compared to no-power management, our techniqueir@pro Reducing the frequency of one component (e.g., the CPU-gere

energy-delay product by 26% on average (up to 64%). N creases execution time, which increases the energy conisurof
One of the advantages of using our approach is its ability to other components (due to static power dissipation for lomge
automatically construct a power-management policy foiecét riods). Thus, the problem of identifying the optimal freqoies

architectures (embedded and general-purpose) and diffelessses that minimize the system energy is far from trivial. Whenfper
of applications. Our technique also can be used to optimize f mance is the main requirement, we are interested in minigizi

different metrics (such as energy and energy-delay prodbat energy while maintaining execution time within a specifiesi-p
can be set by the user, which is useful with systems that pera centage of full performance (which corresponds to the rifre-
one of multiple operation modes (such as power-saving ntugk, quencies available for both CPU and L2 cache). When enemjy an

performance mode and high performance with temperatur&po performance are equally important, the optimization raeide-
budget throughout their missions). For each mode, our @ghro fined as the energy-delay product.

derives a policy that can be loaded at a mode switch to opdithiz

system for its current optimization criteria. All policiase derived

using the same methodology. 2.3 Overview of our compiler-based approach

The rest of the paper is organized as follows. A motivation \ye manage domain voltages through a hardware-software code
and an overview of our approach are presented in Section 2. Wesign approach. Our power management approach consistoof tw
de_scribe the gssential p_hases of our cc_)mpiler_for obtamimgjicy main stages. First, an offline stage where a special-purpase
using supervised learning technique in Section 3, followgda piler constructs a power management policy. Second, aima-t
discussion of some practical design issues in Section 4.régept stage where an embedded microcontroller monitors the my(ite
an evaluatlon_of our _technlqu_e in Section 5, and briefly discu cluding the application behavior) and accordingly reagissét-
related work in Section 6. Finally, we conclude the paper and ing domain voltages as defined by the policy. Figure 3 shows a
discuss future work in Section 7. schematic diagram of an example processor chip with two dtena

and a microcontroller that manages the domains voltagesdiog
2. Integrated DVS policy to the policy derived by our special-purpose compiler. PAC&n
L be used to construct policies for different processor desig
2.1 Motivation In the offline stage, PACSL learns the power management pol-

A typical application goes through phases throughout iesaton. icy using sample applications. For this, we use a specigiqae
An application has varying cache/memory access pattech€ RiJ compiler that (a) analyzes the behavior of sample apptinatand
stall patterns. In general, application phases correspoiabps, (b) develops runtime DVS policy according to a given optiatian
and a new phase is entered when control branches to a differen metric. The analysis takes into account the architectughbbior
code section. Since we are interested in the performanceraardy while executing the given applications. PACSL derives acgals-
of the CPU-core and L2 cache, we characterize each code segme ing a supervised machine learning technique introduced 2. [
in a program using performance monitors that relate to thieigyc The compiler derives separate policies for different oftation

in each of these domains. Figure 2 shows the variations gethr metrics. For systems that operate at different modes, tleeabp
performance counters as examples of monitors that can ik use ing system loads the policy that corresponds to the curgetem

gzip equake art
5 T T T 25 T T T 8 T
45 | CPI —— CPI —— ; IPI —
4+ MPl ——— - 2 MPI E 6 l‘
g 35 1 s (s |
g 3 1 £ 15} J JJ 1 25 |
T 25 - 3 3 4
£ £ L. |
g : \ MULJ : 2 | 8 2 M
15 et b
b A 2
1+ Al 05 .
0.5 [ki 1
0 J 1 I 'y 1 L, 0 il il il O L0 Al e A b I 1A
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
instn (x500K) # instn (x500K) # instn (x500K)

Figure 2. Variations in application phases throughout execution.

mode. Only one analysis phase is needed for all optimizatios:
ria.

During runtime, the microcontroller periodically moniothe
activity in each domain by recording a set of performancentens.
The microcontroller executes the policy to determine thet fre-
guency combination based on the values of the latest peafocem
counters read.

In the next section we focus on the policy construction pssce
detailing the role of the compiler in this stage.

PROCESSOR CHIP
L2 DOMAIN

(CPU DOMAIN
L1 Cache

L2 Cache

= > controller

. Functional Unit%

J L
V_cache [V_cpu i

Main Memory I

Figure 3. Example of an MCD processor design with integrated
DVS control.

/

3. Construction of DVS Policy

To automatically construct a power management policy, RACS
relies on a description of thetate of the system under differ-
ent program behaviors and run-time system characterigtipso-
gram behavior description captures the instruction leaehltelism

and cache/memory demands of the application. A separate run
time characteristics description captures program lagsnduring

a given program phase. The goal is to identify for each ptssib
system state the correattion For example, an action determines

Data Analysis Rule Generation

StatJ

Obtain -
Training | Training| States S| Learning PM
Data | SamplesConstruction [tapje policy

1 1
\ \

Architectural setting ~ Optimization metric

Figure 4. Stages for automatic DVS policy generation.

3.1 Stage I: Data analysis

In this stage, we represent all possible system states kyo# ser-

formance counters readings (Section 3.1.1). The compdeoders
the best operating frequencies for each state through aaustite
search of the training data (Section 3.1.2). The compilen thses
the training data to construct a table that maps a state td_haDB

cache frequency combination (Section 3.1.3).

3.1.1 State representation

In order to train our policy, we need a representation of tfstesn
state that encapsulates the program and architecturavioeath
simple performance metrics. For example, we select the lCHPI,

and MPI, which can be determined from hardware performance
counters. The CPI indicates the CPU utilization; howevedpes

not by itself fully describe program phases. For exampleigha h
CPI corresponds either to a high cache miss ratio, high cache
access latency, or long instruction latencies (such asidivj.
Adding both L2P1 and MPI into the state description can idgnt
the reason behind the high/low CPI, and hence more fullyritess
application behavior. However, the CPI, L2PI and MPI do a&tt
into account the effective latency of instruction executiv cache
accesses (hits and misses), and to fully characterize tigram,
these latencies have to be factored into the state descriptie
describe the effective latency as a tuple of CPU-core anddche
frequencies. Since we do not modify the memory speed, wet don’
include the memory frequency in our state representatidiis T
representation (CPI, L2PI, MPI, CPU-core and cache fregiesh

not only captures the total latency, but it also provides stimeate

how the CPU-core and L2 cache frequencies should be adjustedof the total energy, since it is closely related to the opegat

to minimize energy-delay product. The compiler outputs kcpo
that maps states to actions with the objective of optimiznger-
formance metric (for example: energy and/or delay). Thepiten
creates the DVS policy by conducting two main stages: dat an
ysis and policy learning. Figure 4 illustrates the main safek de-
riving the power management policy. Below, we describe éis&g
performed in each of these two stages.

frequencies.

3.1.2 Obtaining Training Data

The data used to learn the policy is obtained from trainingche
marks in the following manner. LelV. and N;, be the number
of CPU and cache frequencies, respectively. We run allitrgin
benchmarks at all CPU and cache frequency combinativnsi{},

combinations). A sample is defined as a continuous codeosecti
of fixed number of instructions equal t@ze. Thus, each training
benchmarks with a total afnst instructions will generatdd =

is the one that minimizes the metric. In other words, after up
dating the Acc table for all samples, the action for each state,
ST[C Plyi;)[L2PIki;][M PlIwij][i][4]. is the frequency combina-

inst/size code samples for one particular CPU/cache frequency, tion (z, y) that produce the minimum

andN. - N, - K samples for all frequency combinations. We de-
note the samples bykij = {OPI}“']', L2PI}“']', MPIM]', Mkij},
wherek represents the code sample k& < K), andi andyj are
frequency indexes)(< i < N. and0 < j < Np). My;; is the
metric to be optimized. Based on the user setting, the PAGSL s
stitutesMy,;; by eitherEy;;, or EDy;; when optimizing for energy
or energy-delay product, respectively.

Thus, a state is described by five parameters: CPI, L2PI, MPI,

CPU-core frequency and L2 cache frequency. CPI, L2PI, and MP
are continuous variables and need to be discretized. Wesehmo
number of discrete intervals, discretization bins, in a Wt the
sample densities in each bin are almost equal. For exangitapise

of the L2 cache efficiencies in current designs, if most saspave
low L2PI, this would consequently create more L2PI rangeh wi
lower values (i.e., finer granularity where the density ghieir).

As an illustrative example, consider a system with two CPt an
L2 cache frequencies: 0.5GHz and 1GHz. For ease of pregamtat
we use values for two performance monitors: CPI and L2PI. To
reduce the state space, we discretize CPIl and L2PI valuzsant
bin intervals. CPI bins cover values [0,1.39] and]13%, and
L2PI bins cover [0,0.02] and]0.0%;]. Each sample lists its CPI
and L2PI bin indexes and the energy-delay product when ngrati
each frequency combination. Table 1 shows the collectegksm
in our example.

3.1.3 ST construction
After collecting data for all samples;.;;, we construct the state

table ST, which contains the correct action for each state as de-

termined by the training datéST includes all possible system
states. Lete, I, m be the number of discrete values (bins) of
the CPI, L2PI, and MPI, respectively. The state table is eefin
as: ST|CPI.|[L2PL;]|[M PI,][i][j], whereCPI., L2PI;, and

M PI,, are the discretized values. For each state we want to deter-

mine the action that minimizes a user-selected optiminatietric;
for example, the energy-delay product.

We construct the table as follows. Since for each section of

code all the possible frequency combinations are availéidebest
action can be determined by adding the energy-delay praafuct
each sample running at the new frequency. Since differenioges

of code may have the same state, an array that accumulates al

values for the same state are used:

ACC[CP[M]'] [L2PI}“']'] [MPIkZ]] [7,] [j] [IE] [y] y WhereC’PIkij,
L2PIy;;, M Ply;j, i, andj are the state parameters an@ndy

are the new CPU and cache frequencies (that is, the action). F
each training sampl8y;; and each possible actian y (z is the
next CPU frequency is the next cache frequency), we update the
array as follows.

for all samplesio
for all CPU frequency =0... N, do
for all Cache frequency =0... N, do
for all future CPU frequency =0... N, do
for all future Cache frequenay=10...N; do
Acc[CPlyij|[L2P 1] [M Plri;)[i] [5][x][y]+ =Mkzy
end for
end for
end for
end for
end for
The arrayAcc accumulates the values of the optimization met-
ric, M.y, for all training samples and under all possible actions.
After updating the array for all samples, the action for esizlte

Acc[CPlIyij|[L2P11i;][M Plyi;][3)[4][x][y]. The resulting state
table is a five dimensional table (three features and frecjasrior
two domains) that represents all possible system stafEsaps a
state to the best frequency that optimizes the metric unolesid-
eration.

Table 2 shows the state table for the training samples shown i
Table 1. State description is composed of CPI, L2PI and theditw
main frequenciesft,.. andfs). The table shows the best frequency
combinations (CPU frequency / Cache frequency) for eatt d&x
scription. Note that not all of th8Tstates are populated (unpopu-
lated states are marked by -). That is why we use machineifearn
to learn the best frequency combination in the missing stagsed
on the discovered ones.

Table 2. ConstructedsTfrom samplesin Table 1.

Fopu=05GHZ | f.pu=1GHz
CPI | L2PI |[fs=05 | fs=1 | fs=0.5] Js=1
0 0 105 | 1/05| - -
0 1 171 | 11 - 1/1
1 0 1/05 | - 1/05 | 1/0.5
1 1 1/05 | - 1/1 | 105

Since the training data do not cover all possible statesén th
table (because some states may not be discovered fromithiegra
applications/data). We use a supervised machine leartgogthm
to derive the DVS policy that can react (select new CPU antieac
frequencies) to any possible system state.

3.2 Stage lI: Integrated DVS policy learning

There are many supervised learning techniques, includigs
tic classification, neural network, decision tree, and psional
rule. We prefer the propositional rule approach becausentdre
compact, more expressive, and more human readable thathtre o
techniques. Furthermore, propositional rules are easypéeiment
in hardware. In fact, we tried all the aforementioned teghas on
the training data and the propositional rule approach mosety
modelsST.

We use the Repeated Incremental Pruning to Produce Error

eduction (RIPPER) learner [3]. The RIPPER algorithm isvino
o achieve low error rates while being efficient on large datts.
RIPPER represents the collected states in the form of pitbqael
(if-then) rules. Each rule specifies the desirable CPU feagy
and cache frequency for the next program interval based en th
current state. The learner is based on the Incremental Reduc
Error learning IREP algorithm [5]. RIPPER repeatedly cHREP
to construct the rule set with low error rates.

IREP iteratively builds its rule set in a greedy fashion;tisa
one rule at a time. IREP works in two phases: growing and prun-
ing. First, it randomly partitions the data set in to two setssthe
growing and pruning sets. The rule growth phase construdts-a
tial rule set. It starts with an empty clause and then repiaselds
sub-conditions to the antecedent. The sub-conditionsmiagithe
coverage of the rule (represents more states). The stoppiagon
for adding sub-conditions is either covering all the inpiates or
not being able to improve the rule coverage. After growingla,r
the rule is immediately pruned in the pruning phase. Pruisiram
attempt to prevent the rules from being too specific. IREFoske
the candidate literals for pruning based on a score thatpfieap
to all the sub-conditions of the antecedent and evaluatedbee
using the pruning data. This process is repeated until atiéstare
covered or the learned rules have very small error.

Table 1. Eight training samples: CPI, L2PI and energy-delay pro@HEX) at all frequency combinations. O and 1 are the index efGRI

and L2PI bins.

Sepu 0.5GHz 0.5GHz 1GHz 1GHz
fs 0.5GHz 1GHz 0.5GHz 1GHz
S CPl | L2PI | ED || CPI | L2PI | ED || CPI | L2PI | ED || CPI | L2PI | ED
1 0 1 200 0 1 354 1 1 183 1 1 187
2 0 1 242 0 1 428 1 1 223 1 1 226
3 0 0 436 0 0 768 1 0 395 1 0 403
4 0 1 274 0 1 481 1 1 252 0 1 250
5 0 0 473 0 0 826 1 1 430 0 0 430
6 1 1 330 0 1 588 1 1 309 1 1 317
7 1 0 361 0 0 642 1 0 327 1 0 339
8 1 0 401 0 0 709 1 0 363 1 0 374

The resulting rules are generated in the form I6f:<cond>
THEN <setfreg>, wherecondis a conjunction of one or more
of the following sub-conditions {PI.., < CPIL.), (CPlcur >
CPI.), (L2PIcur < L2P1), (L2PIcyr > L2P1;), (M Plcyr <
MPI,), MPl.., > MPI,), (cy = 1), and ny = j) where
CPleyr, L2PIcyr, MPlI.yr, ¢y andmy are the current CPI,
L2PU, MPI, CPU frequency and cache frequency, respectively
setfreq specifies the value of the next CPU or cache frequencies.
Rules learned fron$Tin Table 2 are shown in Table 3. Note that
the number of rules is very small because of the simplifietesys
setting chosen in our hypothetical example.

Table 3. Example of a policy to minimize energy-delay product.
Rule

if (L2PI > 1) and (CPIK 0) thenf5=1GHz
elsefs=0.5GHz

Sepu=1GHz

W N | 3

4. Design Issues

Feature Selection Ultimately, all DVS policy decisions are based
entirely on the current system state. It is important, tfozes
to characterize the state in terms of features which prowéde
evant information about the current application phase. Rur
pothesis, based on architectural knowledge, is that CHRJ,Léhd
MPI (along with the current CPU-core/cache frequencieg: ca
ture enough about application behavior to make informedoetso
while still being inexpensive to gather at runtime. We caamere
features to represent a system state; however, using top f@an
tures can cause awverfitting(a known problem in machine learn-
ing) where it is hard to create a general state descriptiothfe
unseen states.

Optimization metrics Once the training samples are collected, the
data used to learn the DVS policy can be obtained for differen
metrics. The collection of training samples is a one-timep $tnd

is independent to the optimization metric. Thus, metrias leter

be changed by simply updatings., in Equation (6). One of the
strengths of our approach is that the compiler needs to aadhe
system only once and therefore generate different policyeézh
optimization metric.

Training applications Training applications are selected based
on the diversity of the states each application can proddippli-
cations that compose the set of training applications shooiin-
plement the others in the set by increasing the number adrdiit
states with information. The mo®T" is populated, the more accu-
rate the policy can derive actions for the unseen stateenemgl, it

is desirable to use representative applications thatdteciemory-

Also, applications that have a large variation of the betrani its
phases, such agc will highly contribute toSTpopulation.

Sample size We chose DVS control intervals measured in number
of instructions instead of number of cycles (or time) to eas
different actions for the same code sample. The table dusgri
the derived policy can actually be used with a periodic timased
mechanism. Different samplgze values result in the same policy
rules, aslong asize is not larger than the application phases. From
an architectural perspective, periodically selecting fregqquencies

is a more immediate approach, because it only requires aesimp
timer-based interrupt mechanism.

Overheads The overhead of a frequency change is typically just a
few microseconds. However, voltage change overheads gheti
ranging from a few dozen microseconds to a few millisecoads (

for StrongARM SA-1100 the voltage change overhead48.s
[10]). The samplaize depends on the total overhead: a small sam-
ple may have high frequency/voltage change overheadse wehil
large sample may exceed typical code phases of applicatians
example, changing the frequency/voltage evernysiwith an over-
head of 14@vs yields an overhead as large as 14%. The overhead
can be mitigated by enforcing a limit on the number of speed
changes. For example, simple schemes can enforce at most one
speed change say everyri, without changing the sample size.
Alternatively, the size can be increased. Even betterenhi over-
head for a voltage change is large, frequency changes aréastr

and the system is operational while the voltage is scalingeithe
frequency is decreased, the system immediately changdeethe
qguency, although it will take a while for the voltage to lowathen

the frequency is increased, the system runs on the old fregue
until the voltage is raised, after which the frequency iséased as
well. Thus, the actual overhead is just the frequency change
head, though frequency increases may take effect with g fela
example 140us in the strong arm processor). Such delays are much
shorter than application phases and do not affect the pdlioje
also that voltage change overheads are today in the mi@ndsc
range [9].

Inefficient operating points Processors may have inefficient fre-
guency/voltage combinations [8]. A frequency is ineffitiéthere
exists a higher frequency that results in lower energy comsion.
Another advantage in our approach is that the compiler céarde
mine the best action and inefficient operating points araraly
eliminated if they exist.

Measurement-based versus theoretical modelde use a mea-
surement based approach (i.e., experiments are run teedepol-
icy), as opposed to an analytic model-based approach. Tiere,
is no implicit assumption of theoretical power models (sash

bound and CPU-bound phases to cover more states in the tablepower relationship with the voltage and frequency). Thisanse

Table 4. Simulation configurations

Parameter Config A ConfigB
Decode width 1linsn 4insn
Issue width 1linsn 6insn
dL1 cache 64KB, 2-way | 64KB, 2-way
iL1 cache 64KB, 2-way | 64KB, 2-way
L2 Cache 1MB DM 1MB DM
L1 lat. 2 cycles 2 cycles
L2 lat. 12 cycles 12 cycles
Int ALUs 2+1 mult/div | 4+1 mult/div
FP ALUs 1+1 mult/div | 2+1 mult/div
INT Issue Queue| 4 entries 20 entries
FP Issue Queue| 4 entries 15 entries
LS Queue 8 64
Reorder Buffer 40 80

that the policy works well in identifying the correct actewithout
assuming of whether the system supports DVS or just frequenc
scaling (for example) and without assuming of the relatigms
among voltage, frequency and power. While a model can be in-
accurate and difficult to construct, measurement-basemaphpes
eliminate this problem from the start, at the expense of tone-
offline measurements.

5. Evaluation

In this section, we analyze the effectiveness of PACSL naho
ogy. We state our experimental setup, evaluate PACSL by aomp
ing it to an independent DVS policy under several systeninggstt
and analyze the training process.

5.1 Experimental Setup

We use the Simplescalar and Wattch architectural simudatith

an MCD processor extension [19]. The MCD extension by Zhu et
al. models inter-domain synchronization events and velsgling
overheads. We alter the design in [19] to construct two domai
CPU-core and L2 cache, as shown in Figure 3. The simulated
frequencies for both domains vary from 250MHz to 1GHz with
250MHz steps. Voltage scales linearly with the frequencthia
specified range. Memory is considered an external domaln avit
fixed latency. The processor configuration used in our sitiuia

is listed in Table 4. Unless stated otherwise, we use thdesiague
processor configuration (Config A) for our results. We diszee
CPlvaluesinto 11 bins, L2PI into 8 bins, and MPI into 4 bins.

To obtain the propositional rules, we uiieipfrom the WEKA
data mining software package [1dRipis an optimized implemen-
tation of the RIPPER learner. The rules are produced baséuon
data collected for the given architectural configuratioacltrule
specifies the desirable CPU frequency and cache frequentyefo
next program interval based on the current state (that i, .CP!,
MPI, old CPU and cache frequencies).

An important aspect of using JRip is the format of the trainin
data, which affects the quality of the generated rule sehoAigh
all the state parameters of the training data are discretehé
and CPU frequencies are discrete in nature, while CPI, L2,
MPI are discretized into bins), we specify in the input to pJRIi
that all parameters are continuous to get a more compacsetle
Using JRip also involves tuning the parameters for the RRPE
algorithm. For instance, the RIPPER algorithm needs taitjmart
the training data into a growing set and a pruning set. We shtte
partition size to be two thirds for the growing set. Since IRER is
a randomized algorithm, different randomization seedsleald to
different results. We experimented with different valuad ahose

a seed value that reduced the error rate and rule set sizeifor o
input.

We ran a mixture of the SPEC2000 and Mibench benchmarks.
The simulations are split intaining andevaluationsimulations.
The training simulation executes a subset of the applicatio gen-
erate the samples used for deriving the policy (i.e., thepimgpof
states to actions as described in Section 3). Training cgins
are listed in Figure 9. For the SPEC2000 benchmarks, thargi
simulations use th&rain input data seaind the evaluation simula-
tions use theef input data setFor the Mibench, we use thamall
data seffor training and thdarge data sefor evaluation. For un-
biased evaluation, 21 out of the 24 reported benchmarks matre
part of the training process. We fast forward the first 100I0§5
million instructions for the SPEC2000 (Mibench) benchnsaahkd
simulate the following 500M instruction. Exceptions are gmall
benchmarks in Mibench suitdijkstra, fft andjpeg where we run
the application for the first 500M instructions or until coleton.

We compare our derived policies againstafttack-decayolicy
proposed in [7], which periodically monitors CPI and L2PI to
control the CPU-core and L2 cache domains independentlydgfe
a 500K instruction control period for the periodic voltagenoges.
We normalize all results to no-power management case, which
operates both domains at the maximum frequencies.

5.2 Experimental Results

In this section, we show the energy-delay product resultthef
policies learned from PACSL in comparison with an independe
CPU-core and L2 cache DVS policy [7]. We show how PACSL is
affected by the class of applications, architectural caméigons,
and the optimization metric (as shown in Figure 1).

Energy-delay product improvementFigure 5 shows the energy-
delay product for the independent DVS policy versus the ones
generated by PACSL The generated policy (with the use of MPI)
contains 33 rules. On average, PACSL's policy improves gner
delay product over the independent policy by 21% and 22% for
the Mibench and SPEC2000, respectively. The independdioypo
being a heuristic-based can perform badly with some apjits

as seen ircrc32 dijkstra and mesa This is because the policy
was unable to select the best frequency to minimize enestpyd

It rather reacts to the CPl and L2PI changes by changing the
frequencies in the same direction of their change, whicts ame
guarantee operating on an efficient frequency.

State description Figure 5 also shows the energy-delay product
in case of discarding the MPI feature from PACSL state dpscri
tion. In this case, PACSL generates a policy with fewer ruk¥s
rules. In Mibench, using MPI does not improve the energyylel
product because most of the applications’ data accesses incc
the caches. So memory latency has trivial effect on the egpli
tions performance and energy. In contrast, SPEC2000 beargsm
have larger memory footprints, thus using MPI in the statedp-
tion enables the rule learner to distinguish between meinomnd
versus L2 cache bound phases. Hence, PACSL with MPI further
improves energy-delay product by 1.8% on average and up% 8.

(in mgrid).
Optimization metric PACSL analyzes the application and the ar-

chitectural behavior once, then it can generate policieseykto-
wards optimizing a given metric. To show this, we use the same

1 Note that results for the independent policy differ from ¢imes reported
in [7]. This is because of few reasons. As reported by [18]use anup-
dated version of the simulator and simulate different windize. More-
over, our MCD design includes only two domains versus sixendriginal
design, and we use only four frequency levels whereas wofkK]imses
continuous frequency range (320 levels).

OPACSL-w/mpi

B PACSL-w/o mpi

OlIndependent DVS

i e ——Er
===

LIS

PG
[[[I

: —— 253

===

[[[I

| ——— 200
-

[[[r

_|[axenha

SPEC

_||I _E.m>m
 —— S

I I I -

[aue|
=

I I I I
aus Gadl

[[[r

_|[Jap fadl

[[[I

oL —— 1100 WUSE

[[[r

o — 151 S0

[[[I

] ALY

Mlibench

ﬂ _ _ _ F
‘\[easHp

_H]]] I
7EMD

= I I E—
n —— 50 L00PE

[[[I

1[Jap-uadpe
T T T 1
T T T T
= o o
[[an]

INdN ©3 pezifewiou 0’3

Figure 5. Energy-delay product for SPEC2000 and Mibench benchmahksiwsing Independent DVS versus PACSL.

BEPACSL

O Independent DVS

} JadsBAe
7[aspdrm

LUAS

pLBLW

_ [mmmE

sean|

SPEC

o [l =1

 —
T\E una
T[y ndde

o -fae

7[awe|
L[ucmlmmﬁ
[umvlmm&
w e ——

Sl s s s s
I e e e s
W_ Jus wadpe

Jap-uodpe
1
T

o]

ibench

T T T

T T T

— Tl u I}
™ o ™

=1 =
a

WdN 03 paz]jewou 3

Figure 6. Energy-delay product when optimizing energy with delayrmhu

EPACSL

O Independent DVS

||I ads-Fre
L[asimdna

LIS

_ PG

i ——

s e e
R
e
ﬁ _IE st

nidde

SPEC

dLLLe

= I -Fae

JM_ _.[y yiuAsd
ﬂ[ymc.ﬁ_

aus Badl

2ap Gadl

=
— 15un wish
E 157 Wwsh

Mibench

e e e e

[Jua” Lwiadpe
L[y Jap-uadpe

_ _ _
T T T T T
™ o ™
o o)

INdN ©3 pezifewiou 0’3

Figure 7. Energy-delay product for policies running on system withfagguration Config B in Table 4.

1.25

Oindependent DVS BPACSL
Z 17 m
1
=4
2
° 0.75 1
H
©
£ 051+
s
c
O 0.25
w
D__
100 ‘ 500 ‘ 2000 100 | 500 | 2000
Mibench SPEC'O0

interval size (K insn)

I # distinctive states
——# new states

table states

s
m

oco
gzip
hzip
twalf
mesa
quake
parser
wr
larme
dijkstra
adpcm

a
training benchmarks

Figure 8. Average energy-delay product at different DVS control-
interval sizes (using Config A).

training samples obtained for energy-delay product andtroact
STto select the best frequency combination that minimize®tie
ergy while maintaining the delay within bound. We show resiar
10% bound on performance degradation. A new policy is géeéra
with this objective. Figure 6 shows the energy-delay prodéiour
benchmarks (when accounting for MPI). On average, we aehiev
21% and 14% improvement over the independent policy for the
Mibench and SPEC2000, respectively.

Processor configuration PACSL can be used with different ar-
chitectural configurations. To show the impact of using PACS
with wide range of processor configurations, we experimetit w
high-performance processor configuration. For this expent, we

use an alpha-like configuration shown in Table 4 (Config BY- Fi
ure 7 shows an improvement of 22% and 31% for the Mibench and
SPEC2000 benchmarks, respectively.

Control Granularity One important parameter of a DVS policy
is how often to trigger a speed change. Few speed change=eredu
overhead but also eliminate the fine grain control to adaghtoter
program phases, and vice versa. In this experiment, we \ary t
period in which we trigger the DVS policy. We report the aggra
energy-delay product— normalized to no-power managemeant—
all reported Mibench and SPEC2000 benchmarks. Figure 8 show
that by increasing the control interval size, the indepengelicy

Figure 9. STcoverage.

(as described in Section 3). The objective is to discovertimbST
from the training sample. Each of the applications usedam+r
ing covers a number of states in the table with some appiicati
having larger coverage than others. Figure 9 shows the nuafbe
distinct states that each application can discover. Théicaions
are sorted in descending order by humber of states. The lapghg
in the figure represents the number of new states contriliats8d
by each application. Intuitively, using applications wahhigher
number of discovered states is more beneficial in the trgipho-
cess as they add more informatior¥@ For example, the first four
applicationsgcg gzip, bzipandtwolf) were responsible for 82% of
theSTcoverage. However, using applications with large number of
distinctive states but populating states that were alreébovered
in STis not useful. For exampldyzip, exhibits similar behavior
to gzip, thus, few new states were populatedSmby bzip. Con-
versely,art is very useful to populate an area not covered by the
other applications. Hence, a desired characteristic fptiggtions
to use in training is to exhibit large variations in prograehbvior
(phases) that are different than other training applicatissed. By
carefully choosing a few applications with varying behay&Tcan
be covered with relatively small number of training appicas.

5.3.2 Rule Simplification

As mentioned earlier, when populating thectable with samples
from the training data, inevitably some entries will havedata.

reduces the number of speed changes, which reduces thg polic These are extrapolated by the RIPPER algorithm, when the &b

overhead and thus reduces its energy-delay product. Orttiee o
hand, our DVS policy naturally has fewer speed changes Isecau
it selects the best frequencies for a given state ratherahanging
the frequency based on reaction to a change in feature valire a
the independent policy. Hence, increasing the controhmatesize
has minimal impact on the energy-delay product in the testege.

From the results in this section, we conclude that our legrni
methodology is capable of generating policies that can tseg-
timize different systems. The policies being aware of theteay
state are effective in optimizing the system (for exampyerdaluc-
ing the energy-delay product or energy with limited perfanoe
degradation).

5.3 Analysis of the training process

In this section, we study the data analysis phase for obigigi
policy to optimize the energy-delay product (same policgdi®
obtain the results shown in Figure 5).

5.3.1 STcoverage

We investigate the efficacy of the training data in discawgthe
possible states iB T, which are used in generating the policy rules

converted into rules. However, some entries will have a krinat
non-zero, number of samples. Since these under-populatgdse
might not represent good average-case behavior for thespmond-
ing system state, it might be beneficial to exclude them frbe t
data given to the RIPPER algorithm.

By omitting states which contain fewer than 60 samples when
applying the RIPPER algorithm, we arrive at a DVS policy con-
taining only 11 rules (with MPI). The difference in energglay
product between the original and reduced policies is gdigdeas
than 1%. We hypothesize that many of the under-populateelssta
simply add noise to the resulting DVS policy, while also ees-
ing the complexity of the rules. Determining the value of eegi
state in deriving a DVS policy is a subject of future work. Red
ing the number of rules has the advantage of reducing thé&me-
overhead of the DVS policy as fewer conditions are tested.

6. Related Work

Several power management policies have been proposeddn inc
porate DVS into MCD chips. The published results show a sig-
nificant power and energy improvement over applying DVS to a
fully synchronized chip (i.e., with a single master cloddagklis

et al. propose an online power management policy that m@nito
gueue occupancy of a domain and adapts the domain’s voltage a
cordingly [7]. For each domain, the policy computes the ¢jgn
the average queue length among consecutive intervals. treare
length increases, the voltage and clock speed are incre@sed
larly, when queue length decreases, the voltage and clos&dsp
are decreased. However, this policy does not take into axdtc¢be
cascading effects of changing a domain voltage on other thama
Another technigue by Magklis et al. uses a profile-basedagmtr
to identify program regions that justify reconfiguratioh [Bhis ap-
proach incurs extra overhead due to profiling and analysisgh
for each application under consideration. In contrasttechinique
learns the DVS policy with training samples and can be direct
applied to new applications without profiling. Zhu et al pesar-
chitectural optimizations for improving power and redgrgom-
plexity [19]. Voltage scaling of off-chip L2 caches for endaed
systems is studied in [11].

Sherwood et al. showed that programs have repeatable phase-
based run-time behavior over many hardware metrics, such as

cache behavior or branch prediction [14]. The authors alevige
a tool, called SimPoint, that automatically identifies amhgsters
the phases in a program in order to speed up architecturalasim
tions [13].

Applying machine learning techniques to reconfigure aechit
tural and compiler settings is a relatively unexplored figdld-
strom et al. present a policy to alter server configuratiomein
action to workloads [16]. The policy learns to identify pretble
CPU and memory configurations. They showed significant perfo
mance benefits using machine learning policy over any fixed co
figuration. Cavazos et al. use supervised learning to pradich
application’s basic blocks can benefit from scheduling e
learned policy selects whether to schedule a block or nat.pidt
icy achieves most of the potential performance improve metiit
significantly less overhead.

7. Conclusions

In this work, we propose a compiler-based approach to automa
ically generate integrated DVS policies, which manage pawe
both CPU-core and L2 cache. We characterize the systembstate
the running application behavior on the given architedtwoafigu-
ration. Our power-aware compiler approach, PACSL, use$inac
learning to learn policies given description of the systdates.
The learned policies are constructed to optimize the syptaer
according to a user selected optimization metric, such asggn
energy-delay product or energy under limitation on perfmoe
constraints. We show that our approach generates efficidiotes
that can achieve larger improvement in energy-delay prooksr

a heuristic-based policy. Our technique saves 22% on ag€tay

to 46%) in energy-delay product over a DVS technique that ap-

ply independent DVS decisions in each domain. Compared-+o no
power management, our technique improves energy-delalupto

by 26% on average (up to 64%). Our approach can be applied to a

wide range of systems that employ dynamic voltage scaling.

References

[1] T. D. Burd and R. W. Brodersen. Energy efficient cmos njcozes-
sor design. IrProc. of The HICSS Conferencdan. 1995.

[2] J. Cavazos, J. Eliot, and B. Moss. Inducing heuristicsléaide
whether to schedule. I®LDI '04: Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design and
implementationpages 183-194. ACM Press, 2004.

[3] W. W. Cohen. Fast effective rule induction. Rroceedings of the
12th International Conference on Machine Learnidgne 1995.

[4] X. Fan, C. S. Ellis, and A. R. Lebeck. The synergy betweewer-
aware memory systems and processor voltage scaliirolceedings
of the Workshop on Power-Aware Computer Systems (PAGS'03)
2003.

J. Furnkranz and G. Widmer. Incremental reduced erronimg. In
International Conference on Machine Learnjmges 70—-77, 1994.

G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and
S. Dropsho. Profile-based dynamic voltage and frequendingca
for a multiple clock domain microprocessor. Broceedings of the
30" International Symposium on Computer Architecture (ISGH'0
June 2003.

G. Magklis, G. Semeraro, D. H. Albonesi, S. G. . Dropsho,

S. Dwarkadas, and M. L. Scott. Dynamic frequency and voltage
scaling for a multiple clock domain microprocesstEEE Micro,
23(6):62—-68,2003.

[8] A. Miyoshi, C. Lefurgy, E. Hensbergen, R. Rajamony, and<R-
jkumar. Critical power slope: Understanding the runtimfe@s of
frequency scaling. IfProceedings of the 8 Annual ACM Interna-
tional Conference on Supercomputjigw York, June 2002.

(5]

6

—

[7

—

[9] T. Pering, T. Burd, and R. Brodersen. Voltage schedufirtge Iparm
microprocessor system. Broc. of the International Symposium
on Low Power Electronics and Design (ISLPED’0pages 96-101,
2000.

[10] J. Pouwelse, K. Langendoen, and H. Sips. Applicativaated
voltage scaling. IREEE Transactions on Very Large Scale Integration
(TVLSI) Sept. 2002.

[11] K. Puttaswamy, K. Choi, J. Park, V. J. M. lll, A. Chattesj, and
P. Ellervee. System level power-performance trade-ofemitbedded
systems using voltage and frequency scaling of off-chigbuand
memory. InProceedings of International Symposium on System
Synthesis (ISSS'0Xyoto, Japan, 2002.

[12] C. Rusu, N. AbouGhazaleh, A. Ferreria, R. Xu, B. ChilJ&. Mel-
hem, and D. Mossé. Integrated cpu and |12 cache frequeriageo
scaling using supervised learning Workshop on Statistical and Ma-
chine learning approaches applied to ARchitectures andpitation
(SMART) 2007.

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calderofuattically
characterizing large scale program behavior. Phoceedings of
the 10th International Conference on Architectural Supfor
Programming Languages and Operating Syste2082.

[14] T. Sherwood, S. Sair, and B. Calder. Phase tracking aedigtion.
In Proceedings of the 30 International Symposium on Computer
Architecture (ISCA'03)2003.

[15] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedutr
reduced cpu energy. IRirst Symposium on Operating Systems
Design and Implementatippages 13-23, 1994.

[16] J. Wildstrom, E. Witchel, and R. J. Mooney. Towards-seiffiguring
hardware for distributed computer systemdQAC '05: Proceedings
of the Second International Conference on Automatic Coimgut
pages 241-249, Washington, DC, USA, 2005. IEEE Computer
Society.

[17] I. H. Witten and E. FrankData Mining: Practical machine learning
tools and techniqguesorgan Kaufmann, San Francisco, 2005.

[18] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formalinal
methods for voltage/frequency control in multiple clocknun
microprocessors. IASPLOS-XI: Proc Intl Conf on Architectural
support for programming languages and operating systqrages
248-259,2004.

[19] Y. Zhu, D. H. Albonesi, and A. Buyuktosunoglu. A high fenmance,
energy efficient gals processor microarchitecture withuced
implementation complexity. INSPASS’05: Proc Intl Symp on
Performance Analysis of Systems and Softwasages 42-53, 2005.

