
Near-memory Caching for Improved Energy Consumption

Nevine AbouGhazaleh, Bruce Childers, Daniel Mossé, Rami Melhem

Department of Computer Science

University of Pittsburgh

(nevine, childers, mosse, melhem)@cs.pitt.edu

Abstract

Main memory has become one of the largest contributors to
overall energy consumption and offers many opportunities for
power/energy reduction. In this paper, we propose a Power-
Aware Cached-DRAM (PA-CDRAM) organization that inte-
grates a moderately sized cache directly into a memory mod-
ule. We use this near-memory cache to turn a memory bank
off immediately after it is accessed to reduce power consump-
tion. We modify the structure of cached DRAM (CDRAM)
with the goal of reducing energy consumption while retaining
the performance advantage for which CDRAM was originally
proposed. We evaluate the approach using a cycle accurate
processor and memory simulator. Our results show that PA-
CDRAM achieves up to 84% (28% on average) improvement
in the energy-delay product and up to 76% (19% on aver-
age) savings in energy when compared to a time-out power
management technique.

1 Introduction

Energy consumption is a limiting constraint for both embed-
ded and high-performance systems. In embedded systems,
the lifetime of a device is limited by the rate of energy dissi-
pation from its battery. On the other hand, energy consump-
tion in high-performance systems increases thermal dissipa-
tion, thus requiring more cooling resources and accordingly
increasing the system’s maintenance overhead. For the ma-
jority of these systems, the memory subsystem consumes a
large portion of the overall energy dissipation, which moti-
vates the need for efficient memory power management.

Memory has a huge internal bandwidth compared to its
external bus bandwidth [1]. To exploit the wide internal
bus, cached DRAM (CDRAM) adds an SRAM cache to the
DRAM array on the memory chip [2] as shown in Figure 1.
Such a near-memory cache acts as an extra memory hierar-
chy level, whose fast latency improves the average memory
access time and thus improves system performance, provided
that the near-memory cache is appropriately configured.

In this paper, we explore the energy saving obtained by
placing SRAM caches closer to the memory, rather than
closer to the CPU. Our evaluation focuses on the mem-
ory’s energy consumption as well as the system’s overall per-
formance. We integrate a moderately sized cache within
the chip boundary of a power-aware multi-banked mem-
ory. We call this organization power-aware cached DRAM,

d
ec

o
d

er

Sense Amplifier

R
o

w
 d

ec
o

d
er

Column decoder

D
R

A
M

−
co

re

C
o
n
tro

l lo
g
ic

DRAM

bank

address

address

address

row

cache Line

column

in/out
Data

SRAM cache

cach
e

o
n
−

m
em

o
ry

Figure 1: Functional block diagram of a CDRAM

(PA-CDRAM). In addition to improving performance, PA-
CDRAM significantly reduces energy consumption in caches
and in main memory. Cache energy is reduced because (1)
using small caches distributed to the memory chips reduces
the cache access energy compared to using a large non-
distributed cache, and (2) near-memory caches allow the ac-
cess of relatively large blocks from memory, which is not
affordable with far-from-memory caches. Memory energy
consumption is reduced by having longer memory idle period
during which DRAM banks can be powered off. PA-CDRAM
improves the original CDRAM by tackling the interplay of
the cache and memory organizations to optimize the mem-
ory’s performance and energy consumption.

2 PA-CDRAM

CDRAM was originally proposed to improve system perfor-
mance; however, it was not designed as a replacement for
power-aware memory. In comparison with traditional mem-
ory hierarchy1, CDRAM has a good performance improve-
ment over traditional memory (reaches 50%); however, total
memory energy consumption suffers dramatically (increase
can reach 1.5x to 3.0x) [4]. This increase is due to the extra
energy consumed in accessing the near-memory caches and
transferring more data from the DRAM-core at large block
sizes.

The energy penalty of CDRAM can be overcome by im-
proving the miss rate of the near-memory cache and using
power management for the DRAM-core. As we will show,
we do not only improve the energy penalty of CDRAM, but
also significantly improve the overall memory energy in com-
parison to a traditional power-aware memory hierarchy.

1CDRAM uses near-memory cache configuration as in [3].

1



Because DRAM power management typically relies on
idleness to select power states, an improved miss rate in the
near-memory cache increases the amount of idleness in the
DRAM-core, leading to more effective power management.
One way to improve miss rate is to increase the capacity of
the near-memory cache. However, the total energy of the
whole memory hierarchy is increased due to greater overall
cache capacity. Instead, we propose to re-allocate existing
cache capacity from the memory hierarchy’s lowest cache
level to near-memory cache. For example, it may be pos-
sible to allocate the capacity of the L3 cache to CDRAM’s
near-memory cache. The L3 cache could then be eliminated,
possibly without harming application performance. Moving
cache capacity to the near-memory cache has three advan-
tages. First, the near-memory caches are distributed among
the memory chips, which leads to lower energy consumption
because the individual caches are smaller than one mono-
lithic cache. Second, large data transfers are possible from
the DRAM-core to the near-memory cache (i.e., there is more
memory bandwidth, which makes large block sizes feasible).
Finally, the near-memory caches can filter accesses to the
DRAM-core. Such filtering increases idleness and lets the
DRAM-core stay in a low power state for longer periods.

To build a power-aware cached DRAM, there are two main
challenges that must be addressed: (1) how to manage the
DRAM-core’s power and (2) what is the best configuration
for the near-memory cache to balance energy and perfor-
mance. We describe each of these challenges and our way of
addressing them below.

2.1 Memory power management

With a near-memory cache, we propose applying aggressive
power management in the DRAM-core. During a chip’s idle
time, the memory controller can immediately transition the
DRAM-core to the sleep state after servicing all outstand-
ing requests. This is equivalent to the use of a timeout
policy with an idle threshold of zero seconds. Although a
zero-threshold policy increases the total inactive time, it can
degrade performance and increase the total energy consump-
tion when too many requests are directed to a memory chip.
The extra delay and energy overheads are due to the transi-
tional cost between power states.

In PA-CDRAM, we avoid this problem by choosing the
near-memory cache configuration in a way that increases the
hit rate while reducing the DRAM-core’s energy consump-
tion. When most data requests are serviced as cache hits
in the near-memory cache, the inter-arrival time between re-
quests that reach the DRAM-core increases, making it cost
effective to immediately deactivate banks after servicing out-
standing requests. We choose to keep the near-memory cache
active all the time to avoid delays that may be caused by on-
demand activation of the cache at each request.

2.2 Memory energy trade-off

To reduce the memory’s energy consumption, we need to
consider the effect of the near-memory cache configuration on
the energy consumption of both the near-memory cache and

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 64  128  256  512  1024  2048

E
n

e
rg

y
 (

m
J
)

block size (bytes)

total energy
DRAM-core

near-mem cache

 0

 10

 20

 30

 40

 50

 60

 70

 64  128  256  512  1024  2048

E
n

e
rg

y
 (

m
J
)

block size (bytes)

total energy
DRAM-core

near-mem cache

Figure 2: The effect of varying the cache block size on the
memory energy consumption for bzip (left) and mcf (right).

the DRAM-core. The two factors that affect the cache energy
consumption and access latency —for a given cache size and
fixed number of cache subbanks —are the associativity and
the block size [5].

The cache associtivity directly affects miss rate. Increas-
ing associtivity reduces cache miss rate and vice versa. One
goal of PA-CDRAM is to keep the near-memory cache miss
rate as low as possible because it directly influences memory
energy consumption in two ways. First, the higher the miss
rate, the more activity in the DRAM in terms of transition-
ing from sleep to active state, performing address decoding,
and transfer of data. Second, the lower the miss rate, the
longer the DRAM-core idle time. To keep the miss rate at
a minimum, we use fully associative caches to eliminate any
conflict misses. We argue that in most cases, performance
improvement and energy saving from reducing near-memory
miss rates can outweigh extra delay and energy consumed in
accessing higher associative caches.

Choosing a near-memory cache block size creates a trade-
off between the near-memory cache and DRAM-core energy
consumption. Small cache blocks have the advantage of
fast hit time and low energy per access. However, smaller
blocks imply frequent accesses and consequently increasing
the DRAM-core energy due to the increased activity. . The
increase in the DRAM-core energy rises as a result of increas-
ing the memory activity (such as power-state transitions, ad-
dress decoding, and data transfer). Conversely, larger near-
memory cache block sizes reduce the DRAM-activity but
increases the near-memory cache energy consumption and
latency due to accessing these large blocks.

This trade-off is illustrated in Figure 2. The figure show
variation of the energy consumption in near-memory cache
and DRAM-core with the cache block size. Energy val-
ues are obtained using a simplified energy model. The
model estimates the near-memory cache energy consump-
tion, Ecache, and DRAM-core, EDcore as a function of
the number of near-memory cache accesses (c access) and
DRAM-core accesses (d access), respectively. We estimate
Ecache = Ec access · #c access and EDcore = Ed access ·

#d access + Etrans · #trans + Pidle · Tidle . The cache ac-
cess energy (Ec access) is obtained from the Cacti tool [5]2,
while the DRAM-core’s energy per access (Ed access), the
power state transition energy (Etrans), and the idle power
(Pidle) are specifications of an RDRAM memory chip [6].

2Cache energy values are obtained for a 256KB cache

2



To simplify the energy memory estimation, we assume an
application with the following behavior: (1) has high spa-
tial locality; that is, all data accessed from the DRAM-core
are read/written by an application, (2) each cache block is
read only once from the DRAM-core, and (3) uses imme-
diate deactivation of DRAM-core after each access. Thus,
#d access = #c access

blocksize
and #trans = 2 · #d access. Tidle is

an application’s execution time minus time spent accessing
data from the DRAM-core and transitioning between power
states.

From this model, given the number of L2 misses and
the approximate execution time for an application, we can
roughly estimate the memory energy consumption at differ-
ent block sizes. We use simplescalar [7] to estimate the two
input parameters. In Figure 2, we show estimated energy
for two of the SPEC2000 benchmark: bzip and mcf as an
example of CPU and memory intensive applications, respec-
tively. In bzip, the DRAM-core idle energy dominates the
PA-CDRAM energy, while in mcf, the frequent accesses to
the near-memory caches makes the cache energy dominate
the total energy at large block sizes. From the figure, we
see that the trade-off between the near-memory cache and
DRAM-core energy consumption creates a sweet spot be-
tween block sizes 256 and 512 bytes. Note that, ideal block
size varies in applications with different degree of locality and
memory traffic intensity. However, from our simulation, in
most of the applications, the minimum energy-delay product
can be achieved at, or within a slight margin of, one of these
two block sizes.

From this section, we conclude that for the given cache
size, the near-memory cache should be fully associative and
have a block size of either 256 or 512 bytes. For the DRAM-
core, setting the chip to the sleep state after servicing out-
standing requests is expected to save the memory energy con-
sumption. The implementation described in the next section
uses such configuration.

3 PA-CDRAM implementation

Our PA-CDRAM design modifies the original RDRAM de-
sign for power efficiency. Beside the addition of the near-
memory cache, some alterations are needed in the main com-
ponents of the RDRAM, namely: the DRAM-core, and the
control logic.

Near-memory cache: We add a fully associative cache
(depicted as dark blocks in Figure 3) with its data divided ar-
ray into two sections. Since the original RDRAM design has
a divided data bus, each section of the cache is connected to
one of two internal data busses (DQA and DQB). Each cache
section stores half of each cache block. We keep the write
buffers in the original RDRAM before the sense amplifiers.
The write buffers are used to store replaced dirty blocks from
the near-memory cache to be written to the DRAM-core.
The power state of this cache is independent of the power
state of the other chip components. In the nap state, the
RDRAM internal clock is periodically synchronized with the
external clock [6]. Thus, the near-memory cache is accessible
even when the DRAM is in the nap state.

8

8

bufferwrite

SRAM cache

bufferwrite

boundary
Chip

DQB

R
am

b
u

s 
C

h
an

n
el

: 
fr

o
m

/t
o

 M
em

o
ry

 C
o

n
tr

o
ll

er

D
R

A
M

 c
o

re

B
an

k
 2

Sense amps

Sense amps

B
an

k
 3

1

B
an

k
 3

0

B
an

k
 3

B
an

k
 1

B
an

k
 0

C
ac

h
e

ro
w

 &
 c

o
l.

d
ec

o
d
er

s

column addr

column addr
b/2

b/2

SRAM cache

DQA

D
R

A
M

ro
w

 &
 c

o
l.

d
ec

o
d
er

s

Control
Logic

Row &
Column
bus

bus

Control

Control
registers

P
ac

k
et

 d
ec

o
d
er

C
o
n
tr

o
l

re
g
is

te
rs

P
o
w

er
m

o
d
es

row addr

row addr

b/2

Figure 3: Functional block diagram of a PA-CDRAM.

DRAM-core: To accommodate the large transfer sizes
between the DRAM-core and the near-memory cache, wider
internal data busses are required to connect the sense am-
plifiers with the near-memory cache. The width of each bus
connecting the DRAM and near-memory caches is b/2 bits,
where b is the size of a cache block. The busses DQA and
DQB remain at an 8-bit width.

Control logic: Extra cache row and column decoders are
added in the chip’s control logic for decoding cache addresses.
In addition, the existing RDRAM packet decoder in each
chip is modified to decode new cache commands. The new
cache commands indicate whether the access is a hit/miss
in the cache, and whether replacement is needed. We take
advantage of the Rambus bus to define the cache commands
without the need to add extra control pins in memory chips.

4 Evaluation

We evaluate PA-CDRAM using Simplescalar architecture
simulator [7] and an integrated RDRAM memory simula-
tor [8]. Simulations are performed using a set of applications
from the SPEC2000 benchmark suite. Our study evaluates
PA-CDRAM against a base case that employs traditional
power saving policies implemented by Rambus. The mem-
ory controller uses a linear memory page allocation as used
in [9,10] with a timeout of 1000 cycles that achieves the best
average energy-delay product across all simulated applica-
tions. The cache hierarchy consists of 32KB instruction and
data L1 caches, 256 KB L2 cache, and 2 MB L3 cache. Mem-
ory consists of eight 32 MB RDRAM chips. In PA-CDRAM
we replace the L3 cache with eight near-memory caches in-
tegrated into PA-CDRAM chips, such that the total near-
memory cache capacity equals the L3 capacity. We use inter-
leaved memory mapping to make use of all the near-memory
caches. We compute the energy consumption in the DRAM-
core, caches and busses. We use Cacti 3.0 [5] estimation of
the cache access energy and delay. For the memory chips we
use the specification of the RDRAM 256Mb/1066MHz/32
split bank architecture [6]. We use bus models in [11] to es-
timate the memory bus energy. From our simulation with

3



different block size we found that near-memory caches with
512B block size yields the least normalized energy-delay av-
eraged over all applications. We use this block size to ob-
tain the results. To analyze the benefits of PA-CDRAM on
energy and performance independently, we evaluate energy-
delay product, execution time and energy consumption of
twelve benchmarks. Figure 4 shows these metrics normal-
ized to the base case.

Figure 4: PA-CDRAM energy-delay break down.

For most applications, there is no significant improvement
in the delay over the base case due to two reasons. First, in
most of the applications, L2 can service a large number of the
memory requests. Second, most of the CPU stalls resulting
from L3 misses can be masked by the execution of other
independent instructions in the pipeline. Three exceptions in
Figure 4 are ammp, art and mcf. For these benchmarks, the
near-memory miss rate significantly improved. In addition,
these applications are characterized by heavy memory traffic;
thus, a reduction in average memory access time significantly
improved performance. From this we conclude that: near-
memory caching well suits memory intensive applications.

From Figure 4, we also see that energy savings alone
reached up to 76%. All applications exhibit energy savings
except for art and twolf. These two applications exhibit poor
spatial locality. This poor locality– combined with the large
block size– causes higher energy consumption due to access-
ing data from the DRAM-core that is never requested by
the applications. Thus, near-memory caching can perform
better in applications with high spatial locality.

5 Related work

To exploit the large internal bandwidth of memory chips, an
extra on-chip cache was introduced by Mitsubishi [12]. Hsu
et al. [2] evaluated the performance of CDRAM in vector
supercomputers. To improve the CDRAM performance, Ke-
dem et al. [13] proposed a cached-DRAM with wide cache
line ranging from 4KB to 8KB interleaved across multiple
DRAM banks. Whereas Hegde et al [3] proposed using vari-
able width cache lines that fit the application access pattern
to save energy consumed in unnecessary traffic between the
DRAM-core and the near-memory cache. Past work did not
explore the energy savings over power-aware memory.

Lebeck et al [9] proposed the use of a power-aware alloca-
tion policy where data is allocated sequentially in each bank
to increase a bank idle periods. An implementation of the
memory power manager in the Linux operating system [10]
allocates memory pages to banks based on the running ap-
plications.

6 Conclusion

In this paper, we explore the energy efficiency of near-
memory caches rather than conventional cache hierarchies,
where the L3 cache is “closer” to the CPU. PA-CDRAM
can be used as an alternative to traditional power-aware
memories to conserve energy and improve performance. PA-
CDRAM reduces the memory’s energy consumption by (1)
bringing the cache closer to the memory to exploit the high
internal memory bandwidth, and (2) distributing the exter-
nal cache into smaller caches that have a low access energy
and latency, and (3) increasing the DRAM-core idle periods
due to the low miss rates of near-memory caches. Our eval-
uation showed that, when compared to traditional memory
using a time-out power management, PA-CDRAM saves up
to 76% energy consumption (19% on average). Moreover,
PA-CDRAM reduces the energy-delay product by up to 84%
(28% on average), where the highest gains are for memory-
intensive applications with high spatial locality.

References

[1] D. Elliott, W. Snelgrove and M. Stumm, “Computational

RAM: A Memory-SIMD Hybrid and its Application to DSP”,

in Custom Integrated Circuits Conference, 1992.

[2] W. Hsu and J. Smith, “Performance of cached DRAM orga-

nizations in vector supercomputers”, in Proc. Intl. Symp. on

Computer Architecture, pp. 327–336, 1993.

[3] A. Hegde, N. Vijaykrishnan, M. Kandemir and M.J. Irwin,

“VL-CDRAM: variable line sized cached DRAMs”, in Proc.

of the Intl. Symp. on Hardware/software codesign & system

synthesis, pp. 132–137, 2003.

[4] N. AbouGhazaleh, B. Childers, D. Mosse’ and R. Melhem,

“Energy Conservation in Memory Hierarchies using Power-

Aware Cached-DRAM”, in Proc. of the Dagstuhl Seminar on

Power-aware Computing Systems. Dagstuhl Research Online

Publication Server, April, 03–08 2005.

[5] P. Shivakumar and N. Jouppi, “CACTI 3.0: An Integrated

Cache Timing, Power, and Area Model”, Technical Report

2001.2, Compaq research labs, 2001.

[6] “Rambus”, 2005, http://www.rambus.com/products.

[7] “Simplescalar simulator/PISA Tool Set version 3.0d”,

http://www.simplescalar.com.

[8] “SDRAM and RDRAM modeling for Simplescalar simula-

tor”, 2003, http:// www.tik.ee.ethz.ch/˜ip3/software.

[9] A. Lebeck, X. Fan, H. Zeng and C. Ellis, “Power aware

page allocation”, in Proc. of the Intl. conf. on Architectural

support for programming languages and OS, 2000.

[10] H. Huang, P. Pillai and K. Shin, “Design and Implementa-

tion of Power-Aware Virtual Memory”, in USENIX Annual

Technical Conf., pp. 57–70, 2003.

[11] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J.

Irwin and A. Sivasubramaniam, “vEC: virtual energy coun-

ters”, in Workshop on Program analysis for software tools

and engineering, pp. 28–31, 2001.

[12] B. Davis, Moderan DRAM Architectures, PhD thesis, Uni-

versity of Michigan, Ann Arbor, 2000.

[13] R. Koganti and G. Kedem, “WCDRAM: A Fully Associative

Integrated Cached-DRAM with Wide Cache Lines”, Techni-

cal report, Duke University, CS dept., 1997.

4


