
Integrated CPU Cache Power Management in Multiple
Clock Domain Processors

Nevine AbouGhazaleh, Bruce Childers, Daniel Mossé and Rami Melhem
{nevine, childers, mosse, melhem }@cs.pitt.edu

Department of Computer Science, University of Pittsburgh

Abstract. Multiple clock domain (MCD) chip design addresses the problem of
increasing clock skew in different chip units. Importantly, MCD design offers
an opportunity for fine grain power/energy management of the components in
each clock domain with dynamic voltage scaling (DVS). In this paper, we pro-
pose and evaluate a novel integrated DVS approach to synergistically manage the
energy of chip components in different clock domains. We focus on embedded
processors where core and L2 cache domains are the major energy consumers.
We propose a policy that adapts clock speed and voltage in both domains based
on each domain’s workload and the workload experienced by the other domain. In
our approach, the DVS policy detects and accounts for the effect of inter-domain
interactions. Based on the interaction between the two domains, we select an ap-
propriate clock speed and voltage that optimizes the energy of the entire chip. For
the Mibench benchmarks, our policy achieves an average improvement over no-
power-management of 15.5% in energy-delay product and 19% in energy savings.
In comparison to a traditional DVS policy for MCD design that manages domains
independently, our policy achieves an 3.5% average improvement in energy-delay
and 4% less energy, with a negligible 1% decrease in performance. We also show
that an integrated DVS policy for MCD design with two domains is more energy
efficient for simple embedded processors than high-end ones.

1 Introduction

With the increase in number of transistors and reduced feature size, higher chip densi-
ties create a problem for clock synchronization among chip computational units. With
a single master clock for the entire chip, it has become difficult to design a clock dis-
tribution network that limits clock skew among the chip components. Several solutions
have been proposed to this problem using globally-asynchronous locally synchronous
(GALS) design. In GALS design, a chip is divided into multiple clock domains (MCD),
where individual chip units are associated with a particular domain. Each domain op-
erates synchronously with its own clock and communicates with other domains asyn-
chronously through queues.

In addition to addressing clock skew, MCD design offers important benefits to re-
ducing power consumption with dynamic voltage scaling (DVS) at the domain level.
Such fine-grain power management is important for embedded systems, which of-
ten have especially tight constraints on power/energy requirements. Indeed, National

Semiconductor has recently developed a technology, called PowerWise, that uses mul-
tiple domains to manage the power consumption of ARM-based system-on-a-chip de-
signs [1]. Since each domain maintains its own clock and voltage independently of
other domains, DVS can be applied at the domain level, rather than at the chip level.
Power and energy consumption can be reduced by dynamically adjusting an individual
domain’s clock and voltage according to domain activity. Throughout this paper we use
the termspeedto collectively refer to voltage and frequency.

Several power management policies have been proposed to incorporate DVS into
MCD chips. For example, Magklis et al.’s seminal online power management policy
[2] monitors queue occupancy of a domain and computes the change in the average
queue length in consecutive intervals. When queue length increases, the domain speed
is increased; when queue length decreases, the speed is decreased. In general, policies
in the literature [3][4][5][6] focus on each domain inisolation without considering
possible inter-domain effects when varying speed.

In this paper, we propose anintegrated power management policy for embedded
processors with multiple clock domains. Unlike other techniques, our policy takes into
account activity and workload in all domains to decide the best set of speed settings. Our
policy stems from our observation that current online DVS policies for MCD chips have
a localized view and control of the DVS in each domain and do not account for domain
interactions. For the Mibench and the SPEC2000 benchmarks, our policy improves the
energy-delay product by 15.5% and 18.5% on average (up to 26%) while energy savings
are 19% and 23.5% on average (up to 32%). The performance penalty is less than
5% and 6.5%, respectively. Compared to a well-known online MCD DVS policy [3],
we show an additional improvement in the energy-delay product of 3.5% and 7%, on
average (up to 13%), with minimal performance degradation. Our policy requires no
additional hardware beyond what is already available in MCD design.

The contribution of this paper is threefold. First, we identify a significant ineffi-
ciency in current online DVS policies, and show the sources and implications of this
inefficiency. Second, we propose a new DVS policy that adapts the core and L2 cache
speeds in a way that avoids these inefficiencies, taking into account domain interactions.
Third, we show positive gains of our policy against a well-known online DVS policy
[3].

The remaining portion of this paper is organized as follows. As background, we first
describe application characteristics and MCD hardware design in Section 2. Section 3
compares independent and integrated DVS policies for MCD in terms of design and
implementation. Section 4 presents our integrated DVS policy and identifies scenarios
where it performs better than an independent DVS policy. Evaluation and sensitivity
analysis of our policy against a well-known DVS policy is presented in Section 5. Other
related work is presented in Section 6 and concluding remarks are in Section 7.

2 Application and MCD Chip Models

In this paper, because of the focus on embedded systems, we first consider a simple
MCD processor with two domains (see Figure 1), namely thecore and theL2 cache,
and later expand it to include processors with more domains. We consider the core and

L1 Cache
L2 cache

Functional Units

Main memoryDOMAIN
EXTERNAL

MCD Chip

Power Management Controller

CORE DOMAIN L2 DOMAIN

coreV VL2

Fig. 1.MCD processor with two domains

the L2 cache domains due to their high influence on the overall performance and energy
consumption. The core domain includes all computational units such as the register
file, functional units, issue unit, decode unit and L1 cache. In the core domain, each
individual unit consumes a small fraction of the total power, but when grouped, that
domain consumes a large fraction of the total chip power. On the other hand, caches
consume a large fraction of the total chip power. For example, caches consume 50%
power for ARM10TDMI running at 400MHz [7] . Moreover, it is predicted that the
L2 cache will continue to be one of the major consumers of energy (due to increasing
on-chip L2 cache sizes) [8].

A typical application goes through phases during its execution. An application has
varying cache/memory access patterns and CPU stall patterns. In general, application
phases correspond to loops, and a new phase is entered when control branches to a dif-
ferent code section. Since we are interested in the performance and energy of the CPU
core and L2 cache, we characterize each code segment in a program using performance
monitors that relate to the activity in each of these domains [3]. Figure 2 shows the vari-
ations in two performance counters (cycle-per-instruction and number of L2 accesses)
as examples of monitors that can be used to represent a program behavior. We obtain
these traces from running the shown benchmarks on Simplescalar with a StrongArm-
like processor configuration (see Section 5). From these graphs, applications go through
varying phases, which cause varying activity in different chip domains.

3 DVS in Multiple Clock Domains

As briefly mentioned above, there are two categories of DVS policies for MCD pro-
cessors that can be implemented in hardware. We discuss them in the context of a two-
domain MCD design shown in Figure 1.

The first is calledIndependent DVS policy. This policy periodically sets the speed
of each domain independently based on the activity of the domain, which is measured
through performance counters in that domain. For example, we may use the number
of instructions-per-cycle (IPC) and the number of L2 cache accesses as an indication
of the activity in the core and L2 cache domains. IPC encompasses the effects of sev-
eral factors affecting performance that occur within the core such as number and type
(INT/FP) of issued instructions, branch mispredictions, L1 and TLB accesses. Higher

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700 800 900 1000

 time

CPI
L2access (k)

(a)gsm-toastphases

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600 700 800 900 1000

 time

CPI
L2access (k)

(b) lamephases

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600 700 800 900 1000

 time

CPI
L2access (k)

(c) rsynthphases

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 100 200 300 400 500 600 700 800 900 1000

 time

CPI
L2access (k)

(d) bzipphases

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600 700 800 900 1000

 time

CPI
L2access (k)

(e)gzipphases

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

 time

CPI
L2access (k)

(f) twolf phases

Fig. 2. Variations in Cycle-per-Instruction (CPI) and L2 accesses (L2access) of six
Mibench and SPEC2000 benchmarks.

(lower) IPC indicates that more (less) instructions finished execution and the presence
of fewer (more) stall cycles in the different core units. Similarly, in the L2 cache do-
main higher (lower) L2 requests indicate higher (lower) activity in the cache’s different
sections. The policy periodically monitors the variations in IPC and L2 accesses across
interval periods. The IPC and number of L2 accesses can be monitored through com-
monly available event counters in most modern architectures. Based on the trend in
a counter, the policy decides to change the speed of the corresponding domain. This
scheme is efficient because it can be done locally and with very little overhead.

The second is theIntegrated DVS policy, which takes into account the effect of
speed changes of one domain on the other domain. For example, reducing speed in
a non-critical domain may result in an indirect slow-down in the performance-critical
domain. This slowdown is not necessarily due to a change in application behavior, but
rather a reaction to the other domain’s slowdown. Detailed discussion of different do-
main interactions is described in Section 4.1. Domain interaction is the driving force
behind our approach.

Our goal is to design an integrated core- L2 cache DVS policy that (1) selects ap-
propriate speeds for each domain, adapting to application’s run-time behavior (phases)
and (2) minimizes the overall energy-delay product1.

The general idea of our integrated MCD DVS approach is the use of a power man-
agement controller that collects information about the workload ofall domains, and sets
the speed of each appropriately. The power management controller uses the combined
behavior in all domains in a given interval to decide the speed of each domain in the
following interval. Details of our proposed policy are presented in Section 4.2.

4 Domain interaction-aware DVS

In this section, we discuss the inefficiency of independent online DVS policies (Sec-
tion 4.1), and propose an interaction-aware DVS policy to overcome this inefficiency
(Section 4.2).

4.1 MCD inter-domain interactions

Applying DVS independently in an MCD processor creates domain interactions that
may negatively affect the performance and/or energy of other domains. We present an
example to illustrate the cause of these effects and their undesired implications; the
reader is encouraged to follow the numbered steps in Figure 3. (1) Assume an MCD
processor is running an application that experiences some pipeline stalls (e.g., due to
branch misprediction). The increased number of stalls results in reduced IPC. (2) The
independent DVS policy triggers a lower speed setting in the core domain. Slowing
down the core will reduce the rate of issuing instructions, including L2 accesses. (3)
Fewer L2 accesses per interval causes the independent policy to lower the speed in the
L2 cache domain. (4) This, in turn, increases the cache access latency, which (5) causes

1 The metric to optimize can vary; we have experimented with the usual metrics, namely energy,
delay, and the most used, the energy-delay product.

more stalls in the core-domain. Hence, this interaction starts a vicious cycle, which
spirals downward.

Fig. 3.Example of positive feedback in independent power management in each domain

The duration of this positive feedback2 depends on the application behavior. For
benchmarks with low activity/load variations per domain, this feedback scenario results
in low speeds for both domains. While these low speeds reduce power, they clearly hurt
performance and do not necessarily reduce total energy-delay product. Analogously,
positive feedback may cause increased speeds in both domains, which potentially im-
proves delay at the expense of increasing energy consumption. These two scenarios
illustrate that the independent policy may not properly react to a domain’s true work-
load.

These undesired positive feedback scenarios arise from the fact that the independent
policy monitors only the local performance of a given domain to set its speed. This local
information does not identify whether the source of the load variability is local to a do-
main or induced by other domains. As a result, the policy cannot take the correct action.
In our example, the variation in IPC can be induced by local effects such as executing
a large number of floating point instructions or suffering many branch mispredictions.
Alternatively, effects from other domains such as higher memory and L2 access latency
can induce variations in IPC. Although the effect on IPC is similar, the DVS policy
should behave differently in these two cases.

To find out how often applications experience such undesired positive feedback, we
analyzed applications under Semeraro et al.’s independent DVS policy [3]. Table 1 illus-
trates the percentage of time intervals where positive feedback occurs in some Mibench
and SPEC2000 benchmarks. The data is collected over a window of 500M instructions
(after fast-forwarding simulations for 500M instructions). We divide the execution into
100K instruction intervals then count the percentage of consecutive intervals that ex-
perience positive feedback in both the CPU and L2 domains simultaneously. The table
shows that some applications experience high rates of positive feedback, while others
are largely unaffected. In the former (e.g.,gsm, lame, rsynth, bzip, parser,andvpr), we

2 A positive feedback control is where the response of a system is to change a variable in the
same direction of its original change.

Table 1. Percentage of time intervals that experience positive feedback scenarios in
some Mibench and SPEC2000 benchmarks.

adpcmdecadpcmencbasicmath crc32 gsmtoastgsmuntoast lame rsynth
0.28% 1.73% 0.24 % 0.18% 27.7% 20.09% 22.56%47.56%

bzip equake gcc gzip parser twolf vortex vpr
26.22% 13.98% 23.35 % 21.07% 26.44% 23.69% 12.38%23.73%

expect that the independent policy will result in relatively high delays or high energy
because it reacts with inappropriate speed setting for more than 20% of the time.

To have a better indication of the core and L2 cache workloads, the policy has to be
aware of the status of both domains, because each domain may indirectly influence the
workload in the other domain. This motivates the need for run-time policies that take
into account the core and the L2 cache interactions to appropriately set the speeds for
both domains in a way that minimizes total energy, delay or energy-delay product.

4.2 Integrated Core and L2 cache DVS policy

In our integrated policy, we monitor the IPC and the number of L2 accesses with perfor-
mance counters. The speeds are driven by the change in thecombinedstatus of IPC and
number of L2 accesses in a given execution interval. The rate of increase or decrease
in speed is based on the rate of increase or decrease in the monitored counter subject
to exceeding a threshold as proposed by Zhu et al. [9]. We introduce a new set of rules
(listed in Table 2) to be executed by the DVS policy for controlling the speeds. The
symbols⇑, ⇓, and− depict an increase, decrease, and no-change in the corresponding
metric. Columns 2 and 3 in the table show the change in the monitored counters while
columns 4 and 5 (columns 6 and 7) show the action taken by independent (our) policy
on the corresponding domain speeds.

Table 2. Rules for adjusting core and L2 cache speeds in independent and proposed
policies.

Event to Action by Action by our
rule monitor independent policyintegrated policy
IPC L2access Vc V$ Vc V$

1 ⇑ ⇑ ⇑ ⇑ ⇓ ⇑
2 ⇑ ⇓ ⇑ ⇓ ⇑ ⇓
3 ⇑ − ⇑ − ⇑ −
4 ⇓ ⇑ ⇓ ⇑ ⇓ ⇑
5 ⇓ ⇓ ⇓ ⇓ − ⇓
6 ⇓ − ⇓ − ⇓ −
7 − ⇑ − ⇑ − ⇑
8 − ⇓ − ⇓ − ⇓
9 − − − − − −

Given the evidence from Table 1, we decided to focus on the positive feedback cases
described in Section 4.1. These cases only cause a change in rules 1 and 5 in Table 2,
and maintain the other rules exactly the same. It only changes the rules when there is a
simultaneous increase or decrease in IPC and L2 cache accesses. As a result, our policy
requires minimal changes to existing policies (i.e., it can be readily supported without
any additional cost), yet it achieves better energy savings. Contrary to the independent
policy, which seems intuitive, our integrated policy doesnot increase (or decrease) the
speed if both the counters show an increase/decrease during a given interval. Instead,
the policy changes speeds as shown in the table.

Next, we describe both cases and the reasons behind the counter-intuitive actions of
our policy.

Simultaneous increase in IPC and L2 cache access (rule 1):Our approach reacts to the
first positive feedback case by reducing the core speed rather than increasing it, as in the
independent policy. This decision is based on the observation that the increase in IPC
was accompanied by an increase in the number of L2 cache accesses. This increase may
indicate a start of a program phase with high memory traffic. Hence, we preemptively
reduce the core speed to avoid overloading the L2 cache domain with excess traffic.
In contrast, increasing the core speed would exacerbate the load in both domains. We
choose to decrease the core speed rather than keeping it unchanged to save core energy,
especially with the likelihood of longer core stalls due to the expected higher L2 cache
traffic.

Simultaneous decrease in IPC and L2 cache access (rule 5):We target the second un-
desired positive feedback scenario where the independent policy decreases both core
and cache speeds. From observing the cache workload, we deduce that the decrease in
IPC is not due to higher L2 traffic. Thus, longer core stalls are a result of local core ac-
tivity such as branch misprediction. Hence, increasing or decreasing the core speed may
not eliminate the source of these stalls. By doing so, we risk unnecessarily increasing in
the application’s execution time or energy consumption. Hence, we choose to maintain
the core speed without any change in this case, to break the positive feedback scenario
without hurting delay or energy.

5 Evaluation

In this section, we evaluate the efficacy of our integrated DVS policy, which considers
domain interactions, on reducing a chip’s energy and energy-delay product. We use the
Simplescalar and Wattch architectural simulators with an MCD extension by Zhu et
al. [9] that models inter-domain synchronization events and speed scaling overheads.
To model the MCD design in Figure 1, we altered the simulator kindly provided by Zhu
et al. by merging different core domains into a single domain and separating the L2
cache into its own domain. In the independent DVS policy, we monitor the instruction
fetch queue to control the core domain, and the number of L2 accesses to control the
L2 cache domain.

Since our goal is to devise a DVS policy for an embedded processor with MCD
extensions, we useConfiguration Afrom Table 3 as a representative of a simple embed-
ded processor (Simplescalar’s StrongArm configuration [10]). We use Mibench bench-
marks with thelong input datasets. Since Mibench applications are relatively short,
we fast-forward only 500 million instructions and simulate the following 500 million
instructions or until benchmark completion.

Table 3.Simulation configurations

Parameter Config. A Config. B
(simple embedded)(high-end embedded)

Dec./Iss. Width 1/1 4/6
dL1 cache 16KB, 32-way 64KB, 2-way
iL1 cache 16KB, 32-way 64KB, 2-way
L2 Cache 256KB 4-way 1MB DM

L1 lat. 1 cycles 2 cycles
L2 lat. 8 cycles 12 cycles

Int ALUs 2+1 mult/div 4+1 mult/div
FP ALUs 1+1 mult/div 2+1 mult/div

INT Issue Queue 4 entries 20 entries
FP Issue Queue 4 entries 15 entries

LS Queue 8 64
Reorder Buffer 40 80

To extend our evaluation and check whether our policy can be extended to differ-
ent arenas (in particular, higher performance processors), we also use the SPEC2000
benchmarks and a high-end embedded processor [9] (seeConfiguration Bin Table 3).
We run the SPEC2000 benchmarks using thereferencedata set. We use the same exe-
cution window and fastforward amount (500M) for uniformity.

Our goal is twofold. First, to show the benefit of accounting for domain interactions,
we compare our integrated DVS policy with the independent policy described in Sec-
tion 3. For a fair comparison, we use the same policy parameters and thresholds used by
Zhu et al. [9]. The power management controller is triggered every 100K instructions.
Moreover, our policy implementation uses the same hardware used in [9], in addition to
trivial (low overhead) addition in the monitoring and control hardware of an MCD chip.
Second, to quantify the net savings in energy and delay, we compare our policy to ano-
DVSpolicy, which runs all domains at highest speed. We show all results normalized to
the no-DVS policy.

We first evaluate the policies using an embedded processor (Configuration A in
Table 3). Figure 4-a shows that for the Mibench applications, the improvement in the
energy-delay product is 15.5% on average (up to 21% inrsynth) over no-DVS policy.
For the SPEC2000 benchmarks, the improvement in the energy-delay product is 18%
on average (up to 26% intwolf) over no-DVS policy. Most of the improvement is a
result of energy savings (an average of 21% across applications) as seen in Figure 4-b,

with much less performance degradation as seen in Figure 4-c (note different Y-axis
scale).

The integrated, interaction-aware policy achieves an extra 7% improvement in energy-
delay product above the independent policy gains. These savings are beyond what the
independent policy can achieve over the no-DVS policy3. The improvement over the
independent policy comes from avoiding the undesired positive feedback scenarios by
using coordinated DVS control in the core and L2 cache domains. However, the energy-
delay product improvement beyond the gain achieved by the independent policy is
highly dependent on the frequency of occurrence of the positive feedback scenarios,
the duration of the positive feedback and the change in speed during these positive
feedback cases throughout the application execution. From Table 1, we notice that the
frequency of the positive feedback inadpcm, basicmath, andcrc32 is almost negligi-
ble; accordingly, there are significantly smaller benefits from our policy as shown in
Figure 4. On the other hand, applications likegsm, rsynth, gcc, parser, andtwolf show
high energy savings due to repeated occurrence of positive feedback cases.

With respect to performance, we note that our proposed integrated policy has a slow-
down of 5% on average for Mibench (7% on average for SPEC2000). This slowdown
is only 1% more than the slowdown of the independent policy.

To test whether a different policy that avoids the undesired positive feedback scenar-
ios using alternative actions (specifically, different actions for rules 1 and 5 in Table 2)
would perform better, we experimented with different rules for these two cases. Table 4
shows the actions of our proposed policy and seven policy variants, in addition to our
proposed integrated policy P0. Figure 5 shows the average degradation in energy-delay
product relative to the independent policy. It is clear that other actions for dealing with
positive feedback scenarios are not as effective in reducing the energy-delay product.
The degradation in energy-delay product of the policy variants ranges from 2% to 12%
over our proposed policy.

Table 4. Variants of our proposed policy: actions of setting the core voltage (Vc) and
the cache speed (V$) in rules 1 & 5 from Table 2.

rule P0 P1 P2 P3 P4 P5 P6 P7
Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$

1 ⇓ ⇑ ⇓ − ⇓ − ⇓ − − ⇑ − − − ⇑ − ⇑
5 − ⇓ − ⇓ − − ⇑ − − ⇓ ⇑ − ⇑ − − −

3 Reported results of the independent policy are not identical to the one reported in [3] due to
few reasons: (a) The latest distribution of the MCD simulation tool set has a different im-
plementation of the speed change mechanism. (b) We simulate two-domain processor versus
five-domain processor in the original independent policy. (c) We execute applications with
different simulation window, as well.

(a) Normalized improvement in energy-delay product

(b) Normalized Energy Savings

(c) Performance degradation

Fig. 4. Energy and delay of independent policy (Independent DVS) and our policy (In-
tegrated DVS) relative to no-DVS policy in configuration A and two voltage domains
processor.

Fig. 5.Average degradation in energy-delay product relative to the independent policy

Sensitivity analysis

We study the benefit of using a domain interaction-aware DVS policy under different
system configurations. We explore the state space by varying key processor configura-
tions and the granularity of DVS control (that is, number of MCD domains). In addition
to a simple embedded single-issue processor (configuration A in Table 3), we experi-
ment with a more complex embedded processor (configuration B, the same processor
configuration used in [9]). This test should identify the benefit of interaction-aware pol-
icy in a simple embedded processor versus a more powerful one. This more powerful
processor, such as Intel’s Xeon 5140 and Pentium M, are used in portable medical, mil-
itary and aerospace applications [11]. Figure 6-a compares configuration A versus con-
figuration B in terms of energy-delay product, energy saving, and performance degrada-
tion. The figure shows the average values over the Mibench and SPEC2000 benchmarks
for 2 domains. One observation is that we achieve larger energy-delay improvement in
embedded single-issue processor (Config A) than the more complex one (Config B).
This larger improvement is mainly due to higher energy savings. In single-issue pro-
cessors, cache misses cause more CPU stalls (due to lower ILP) than in higher-issue
processors. This is a good opportunity for the DVS policy to save energy by slowing
down domains with low workloads while having small impact on performance.

(a) 2 domains (b) 6 domains

Fig. 6.Energy and delay for independent policy (Indpnd) and our integrated policy (Int-
grtd) relative to no-DVS policy for processors with (a) two domains and (b) six domains.

Comparing our results with the independent policy, we notice that the average bene-
fit of considering domain interactions decreases with the increase in issue width. This is
because processors with small issue width are more exposed to stalls from the memory
hierarchy, which makes it important to consider the core and L2 cache domain interac-
tion. In contrast, with wider issue width, these effects are masked by the core’s higher
ILP. This result shows that applying the integrated policy can benefit simple embed-
ded processors. Whereas energy-delay savings in high-end embedded processor do not
favor the use of the integrated policy over independent counterpart.

Because we are also interested in the effect of interactions across multiple domains
on energy savings, we examined the effect of increasing the number of clock domains.
To perform this test, we simulated the five domains used in [3], but added a separate
domain for the L2 cache. The resultant domains are: reorder buffer domain, fetch unit,
integer FUs, floating point FUs, load/store queue, and L2 cache domains. We use our
policy to control the fetch unit and L2 domains, and set the speeds of the remaining
domains using the independent policy [3] [9].

Figure 6-b shows the results for the two processor configurations when dividing the
chip into 6-domains. Comparing Figures 6-a and 6-b, we find that DVS in processors
with large number of domains enables finer-grain power management, leading to larger
energy-delay improvements. However, for embedded systems, a two-domain proces-
sor is a more appropriate design choice when compared to a processor with a larger
number of domains (due to its simplicity). Figure 6 shows that increasing the number
of domains had little (positive or negative) impact on the difference in energy-delay
product between our policy and the independent policy. This indicates that the core-
L2 cache interaction is most critical in terms of its effect on energy and delay, which
yielded higher savings in the two-domain case. We can conclude that a small number
of domains is the most appropriate for embedded processors, not only from a design
perspective but also for improving energy-delay.

6 Related Work

MCD design has the advantages of alleviating some clock synchronization bottlenecks
and reducing the power consumed by the global clock network. Semeraro et al. explored
the benefit of the voltage scaling in MCD versus globally synchronous designs [3]. They
find a potential 20% average improvement in the energy-delay product. Similarly, Iyer
at al. analyzed the power and performance benefit of MCD with DVS [4]. They find
that DVS provides up to 20% power savings over an MCD core with single voltage.

In industrial semiconductor manufacturing, National Semiconductor in collabora-
tion with ARM developed the PowerWise technology that uses Adaptive Voltage Scal-
ing and threshold scaling to automatically control the voltage of multiple domains on
chip [1]. The PowerWise technology can support up to 4 voltage domains [12]. Their
current technology also provides power management interface for dual-core processors.

Another technique by Magklis et al. is a profile-based approach that identifies pro-
gram regions that justify reconfiguration [5]. This approach involves extra overhead of
profiling and analyzing phases for each application. Zhu et al presented architectural
optimizations for improving power and reducing complexity [9]. However, these poli-

cies do not take into account the cascading effect of changing a domain voltage on the
other domains.

Rusu et al. proposed a DVS policy that controls the domain’s frequency using ma-
chine learning approach [13][14]. They characterize applications using performance
counter values such as cycle-per-instruction and number of L2 accesses per instruc-
tion. In a training phase, the policy searches for the best frequency for each application
phase. During runtime, based on the values of the monitors performance counters, the
policy sets the frequency for all domains based on their offline analysis. The paper
shows improvement in energy-delay product close to a near-optimal scheme. However,
the technique requires an extra offline training step to find the best frequencies for each
domain and application characterization.

Wu et al. present a formal solution by modeling each domain as a queuing sys-
tem [6]. However, they study each domain in isolation and incorporating domain inter-
actions increases the complexity of the queuing model. Varying the DVS power man-
agement interval is another way to save energy. Wu et al. adaptively vary the controlling
interval to react to changes in workload in each domain was presented in [15]. They do
not take into account the effect induced by voltage change in one domain on the other
domains.

MCD design is applied for the multicore and simultaneous multithreading proces-
sors such as in [16][17][18]. In [16][17], each core has its own clock network, and the
DVS policy independently controls each core’s voltage. Lopez et al. studies the trade-
off between adapting the L2 cache capacity and speed based on the number of active
threads in the core domain [18].

7 Conclusion

In MCD processors, applying DVS in each domain can significantly reduce energy
consumption. However, varying the voltage and clock independently in each domain
indirectly affects the workload in other domains. This results in an inefficient DVS
policy. In this paper, we identify these inefficiencies in online MCD-DVS policies, and
propose a simple DVS policy that accounts for inter-domain interactions. Our policy
separately assigns the voltage and clock of the core and L2 cache domains based on
activity in both domains. We show that our policy achieves higher energy and energy-
delay savings than an MCD DVS policy that is oblivious to domain interactions. Our
policy achieves average savings in energy-delay product of 18.5% for the SPEC2000
and 15.5% for the Mibench suites. Moreover, our policy achieves higher savings in
energy-delay product over past independent DVS approaches (7% for SPEC2000 and
3.5% for Mibench benchmarks) using the same hardware. We also show that processors
with narrow issue widths have a larger improvement in the energy-delay product with
our integrated DVS policy. Finally, our results show that a simple MCD design using
two domains is more energy efficient for simple embedded processors than for high-end
ones.

References

1. National Semiconductor, “PowerWise Technology”, 2007,
http://www.national.com/appinfo/power/powerwise.html.

2. G. Magklis, G. Semeraro, D.H. Albonesi, S.G. Dropsho, S. Dwarkadas and M.L. Scott, “Dy-
namic Frequency and Voltage Scaling for a Multiple-Clock-Domain Microprocessor”,IEEE
Micro, vol. 23, n. 6, pp. 62–68, 2003.

3. G. Semeraro, D.H. Albonesi, S.G. Dropsho, G. Magklis, S. Dwarkadas and M.L. Scott, “Dy-
namic frequency and voltage control for a multiple clock domain microarchitecture”, in
MICRO 35: Proc Intl Symp on Microarchitecture, pp. 356–367, 2002.

4. A. Iyer and D. Marculescu, “Power and performance evaluation of globally asynchronous
locally synchronous processors”, inISCA’02: Proc Intl Symp on Computer architecture, pp.
158–168, 2002.

5. G. Magklis, M.L. Scott, G. Semeraro, D.H. Albonesi and S. Dropsho, “Profile-based dy-
namic voltage and frequency scaling for a multiple clock domain microprocessor”, in
ISCA’03: Proc Intl Symp on Computer Architecture, pp. 14–27, 2003.

6. Q. Wu, P. Juang, M. Martonosi and D.W. Clark, “Formal online methods for volt-
age/frequency control in multiple clock domain microprocessors”, inASPLOS-XI: Proc
Intl Conf on Architectural support for programming languages and operating systems, pp.
248–259, 2004.

7. M. Ben Naser and C.A. Moritz, “A Step-by-Step Design and
Analysis of Low Power Caches for Embedded Processors”, 2005,
http://www.lems.brown.edu/ iris/BARC2005/Webpage/BARCpresentations/ben-naser.pdf.

8. S. Kaxiras, Z. Hu and M. Martonosi, “Cache decay: exploiting generational behavior to
reduce cache leakage power”, inISCA’01: Proc Intl Symp on Computer Architecture, pp.
240–251, 2001.

9. Y. Zhu, D.H. Albonesi and A. Buyuktosunoglu, “A High Performance, Energy Efficient
GALS Processor Microarchitecture with Reduced Implementation Complexity”, inIS-
PASS’05: Proc Intl Symp on Performance Analysis of Systems and Software, 2005.

10. SimpleScalar/ARM, “SimpleScalar-Arm Version 4.0 Test Releases”,
http://www.simplescalar.com/v4test.html/.

11. Intel Embedded products, “High-Performance Energy-Efficient Processors for Embedded
Market Segments”, 2006, http://www.intel.com/design/embedded/downloads/315336.pdf.

12. J. Pennanen, “Optimizing the Power for Multiple Voltage Domains”, 2006, Spring Processor
Forum, Japan.

13. C. Rusu, N. AbouGhazaleh, A. Ferreria, R. Xu, B. Childers, R. Melhem and D. Mossé,
“Integrated CPU and L2 cache Frequency/Voltage Scaling using Supervised Learning”, in
Workshop on Statistical and Machine learning approaches applied to ARchitectures and
compilation (SMART), 2007.

14. N. AbouGhazaleh, A. Ferreria, C. Rusu, R. Xu, B. Childers, R. Melhem and D. Mossé,
“Integrated CPU and L2 cache Voltage Scaling using Supervised Learning”, inLCTES ’07:
Proc. of ACM SIGPLAN on Language, compiler, and tool for embedded systems, 2007.

15. Q. Wu, P. Juang, M. Martonosi and D.W. Clark, “Voltage and Frequency Control With Adap-
tive Reaction Time in MCD Processors”, inHPCA’05: Proc Intl Symp on High-Performance
Computer Architecture, pp. 178–189, 2005.

16. J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L.W. Jones IV, D. Franklin,
V. Akella and F.T. Chong, “Synchroscalar: A Multiple Clock Domain, Power-Aware, Tile-
Based Embedded Processor”, inISCA’04: Proc Intl Symp on Computer Architecture, 2004.

17. P. Juang, Q. Wu, L.S. Peh, M. Martonosi and D.W. Clark, “Coordinated, distributed, formal
energy management of chip multiprocessors”, inISLPED’05: Proc Intl Symp on Low Power
Electronics and Design, pp. 127–130, 2005.

18. S. Lopez, S. Dropsho, D. Albonesi, O. Garnica and J. Lanchares, “Dynamic Capacity-Speed
Tradeoffs in SMT Processor Caches”, inHigh Performance Embedded Architecure and
Compilation (HiPEAC), 2007.

