
SISO PIDF Controller in an Energy-efficient
Multi-tier Web Server Cluster for E-commerce

Luciano Bertini and J.C.B. Leite
Instituto de Computação

Universidade Federal Fluminense
Niterói, Brazil

Email: {lbertini,julius}@ic.uff.br

Daniel Mossé
Department of Computer Science

University of Pittsburgh
Pittsburgh PA, USA

Email: mosse@cs.pitt.edu

Abstract—In this paper we describe a simplified way to
implement performance control in a multi-tier computing system
designed for e-commerce applications. We show that the simpler
SISO (Single Input Single Output) controller, rather than a more
complex distributed or centralized MIMO (Multiple Input Multiple
Output) controller, works well, regardless of the presence of
multiple cluster nodes and multiple execution time deadlines.
Our feedback control loop acts on the speed of all server nodes
capable of dynamic voltage scaling (DVS), with QoS (Quality of
Service) being the reference setpoint. By changing the speed, we
change the position of thep-quantile of the tardiness probability
distribution, a variable that enables to measure QoS indirectly.
Then, the control variable will be the average tardiness, and the
setpoint the tardiness value that will position thisp-quantile at
1.0, value at which a request finishes exactly at the deadline.
Doing so will guarantee that the QoS will be statisticallyp. We
test this new Tardiness Quantile Metric (TQM) in a SISO PIDF
control loop implemented in a multi-tier cluster. We use open
software, commodity hardware, and a standardized e-commerce
application to generate a workload close to the real world.
The main contribution of this paper is to empirically show the
robustness of the SISO controller, presenting a sensibility analysis
of the four controller parameters: damping factor zeta, derivative
filter factor beta, integral gain ki, and zero time constanttau.

I. I NTRODUCTION

As people increase their trust on Internet means for services
like banking and commerce, electronic applications become
everyday more popular and widespread. The complexity of
the computing systems for these applications are increasing
fast, both for well established popular kind of applications
such as e-banking and e-commerce, and also for less known
business-to-business applications, such as e-sourcing, where
businesses auction the willingness to purchase from the seller
who can offer lowest prices and best contracts. Due to the
needed complexity and size, computing systems are becom-
ing complicated, dense, and of high cost of ownership. As
pointed out in [1], because of this growing complexity, the
computing systems for today’s applications need to be able
to do self-configuration and self-optimization, and act in an
autonomic way, such that it can optimize itself seamlessly to
the desired performance objectives. With the motivation that

This research is being partially supported by the BrazilianGovernment, through Capes
PDEE grantBEX-3697053, by CNPq, by the State of Rio de Janeiro Research Foundation
(FAPERJ) under grantE-26/150657/2004, and also by the US federal research agency
NSF, under grantANI 03-25353, S-CITI project.

control theory will play a crucial role in the development of
complex and large scale computing systems, we present in this
paper a practical use of control theory for multi-tier clusters
to host e-commerce and related applications.

Following the work in [2], where the authors discussed the
scaling aspects of control problems that arise in large computer
systems, our control borrows some characteristics from the
centralized MIMO (Multiple Input Multiple Output) models.
They used as a target architecture a multi-tier e-commerce
system composed of multiple layers of web clusters, each
layer used to process a different part of the web request,
namely, request distribution (layer 1), static and dynamic
requests (layer 2), and database access (layer 3). In their
classification, for any performance control, an e-commerce
system has to be either MIMO centralized, where there is
a centralized controller with multiple actuators and multiple
sensors, or MIMO distributed, with several distributed inde-
pendent controllers. The authors claim that the controllerfor
an e-commerce system has to be MIMO by necessity, for
example, because of the existence of multiple web request
types with different response time objectives. However, in
our practical implementation of a multi-tier e-commerce web
cluster, the industry standard e-commerce application used
presented some restrictions that make it impracticable to read
the control metric from the multiple servers. The reason is
that the information, or control metric, is distributed across
the cluster, and the only way to measure it is at the front-
end server where the controller runs. This prompted us to
build a SISOSingle Input Single Output controller, using a
normalized response time among classes of requests to obtain
a single control metric that normalizes the several different
time constraints.

In this paper we show a real implementation of an
e-commerce computing system based only on open source
software and industry standard workloads. Open-source soft-
ware offers a huge advantage for controlled computing sys-
tems, because virtually any metric or measurement can be
derived from the system, as we have total access to the
source code, from the core kernel level to the application
user level. Our objective is to accomplish energy consumption
minimization and QoS (Quality of Service) guarantee. We
build a feedback control loop that regulates the performance

of all dynamic voltage scaling (DVS) capable server nodes
(i.e., layers 2 and 3), with QoS being the reference control
objective. But rather than sensing the QoS directly, which is
measured as a ratio of number of requests that executed within
their deadlines to the total number of requests, we use a new
metric of QoS based on the tardiness of the completion of web
requests proposed in [3], where tardiness, the control variable,
is defined as the ratio of web request response time to the
deadline. This metric is based on the probability distribution
of tardiness, and because it presents more information about
the completion of tasks than the QoS, it offers a better metric
for using in a feedback control loop.

We will apply the theory of a PIDF controller, which
is basically a proportional-integral-derivative (PID) controller
augmented with a low pass filter (F) in the derivative part.
The workload of a web system is a composition of random
variables, and consequently, present the random fluctuations
that is characteristic of any stochastic process. We consider
the unpredictability of the workload as being similar to sensor
noise. With the low pass filter, the process disturbance caused
by random oscillation will be rejected by the controller. Insuch
a web system, it is desirable to have the derivative component,
because as the plant dynamic presents a dead time delay, it
is important to have the predictive characteristic given bythe
derivative part. Besides, we need also to include averages in
the control variable to handle the intrinsic randomness. Wewill
measure the plant dynamics after the inclusion of the averages
and apply some tuning rules for the controller.

Our main contribution is the practical implementation and
robustness evaluation of the control loop for a real e-commerce
web server cluster, with sensitivity analysis to the parameters
of the PIDF controller. The workload is generated by an
e-commerce benchmarking industry standard. We show the
solution for some practical issues, such as the difficulty in
measuring the end-to-end delay of e-commerce requests that
are defined as a sequence of smaller web requests that can be
serviced in a distributed way or in parallel inside the cluster.

In this paper, Section II presents some concepts related to
the cluster model, workload generation, the control input met-
ric, and the DVS based actuator mechanism. In Section III we
derive the controller equations. Section IV presents evaluation
results, and in Section V we discuss the implementation and
compare with other similar implementations.

II. BACKGROUND

Our goal was to deploy a cluster environment to serve
as a testbed for e-commerce applications, specifically to
test energy-efficient policies. In this section we present the
cluster model, the industry standard TPC-W used to create
the e-commerce environment, the statistical inference method
adopted to measure the control variable, and the DVS policy
used. For more details see [3].

A. Cluster Model

The cluster architecture is composed of a central web server
that serves as a front-end to the whole system (layer L1), a

layer L2 of servers to process dynamic and static requests, and
the L3 layer to execute a distributed database that will store all
the information related to the application. The front-end node
implements a request distribution policy based on the amount
of work that each second-tier server has. The front-end server
acts as a reverse proxy, that is, it redirects requests to other
servers and also returns the server’s response to the client.
The front-end is capable of SSL encryption/decryption as
required for the e-commerce application. The load distribution
among the database servers is done statically. We replicate
the web store in many independent database servers to avoid
bottlenecks, and the total load is divided equally to each
database. To implement this architecture we used in layer
L1 the Apache web server with the modulebackhand [4] for
load balancing and a new module to implement the controller,
in layer L2 we have Apache with PHP scripting language
support for the dynamic pages, and in L3, PostgreSQL for
the databases.

B. Workload Generation

The TPC-W standard [5] is a transactional web benchmark
where the workload is performed in a Internet commerce
environment. The workload is generated by a software entity
that runs in the local network, outside the cluster. It is
responsible for managing the emulated browsers (EB) and
the emulated sessions. Each EB is a thread implemented
in Java that makes access the web server, with HTTP and
HTTPS connections, emulating a real customer performing
some browsing, searching and purchases.

The performance metric defined by TPC-W is the number
of web interactions per second (WIPS). TPC-W specifies14
different interactions necessary to simulate the activityof a
book store, and each interaction has a different time constraint
and a specified QoS (as a percentage of requests that do not
violate the time constraint). For a good review about the TPC-
W benchmark see [6].

In the TPC-W, one web interaction is defined as a se-
quence of one HTTP dynamic request followed by many
static requests. The time constraint is related to the end-to-end
execution time of a whole web interaction, from the arrival of
the dynamic request to the time the server sends the last byteof
the last static request. This specification prohibits to measure
the control metric from a single server in isolation, because
as soon as the client receives the response for the dynamic
request, the client will issue many requests for the static
requests, and these requests may be serviced in a distributed
way and in parallel. This restriction guided us to implement
a SISO controller, because the information is located at a
centralized location.

C. Controller Input Metric

The input metric to the controller is based on the tardiness
of a web interaction. For each web interactioni, we define
tardiness by the ratioweb interaction response time (WIRT)
to the respective deadline. That is,tardinessi = wirti

deadlinei
.

Doing this, we normalize all tardines values from all web
interactions in only one measure.

As the goal is to control the QoS, not tardiness, we need a
translation from tardiness to QoS. We implemented a statistical
model based on the probability distribution for the workload.
To do this, we make the assumption that the workload has a
Pareto distribution. For specific probability distributions, the
relation between the tardiness and the QoS can be obtained
analytically. We show briefly the expression for the Pareto
distribution in Equation 1 (we show demonstrations and also
tests of goodness of fit in [3]). The assumption that web traffic
presents a Pareto distribution is common. For example, in [7]
it has been shown that the commonly assumed model for Web
traffic based on Poisson distributions and Markovian arrival
processes does not hold in practice, but rather they presentthe
statistical characteristic of self-similarity, which is the property
that the appearance of an object is always the same if looking
at any scale. They showed that web traffic, such as response
time, can be modeled using heavy-tailed probability density
functions, such as Pareto.

The Pareto probability density function is given byf(x) =

k
xk

m

xk+1 , wherek is related to the averageµ by µ = kxm

k−1 , and
xm is the positive minimum possible value ofX . As tardiness
has a minimum value of0, we usexm = 1 and usex + 1 to
locate the function. Then we obtainf(x) = k

(x+1)(k+1) for the

tardiness probability density function, wherek = µ+1
µ

.
To relate the tardiness with QoS with a known distribution,

we need to calculate thep-quantile and make it equal1.0,
the tardiness value after which a web interaction will miss its
deadline, so that the probability to miss a deadline will be
1 − p, and the QoS will bep. This allows to relate the mean
µ with the value ofp, as follows:

µ =
1

log2

(

1
1−p

)

− 1
(1)

With Equation 1, we have a statistical inference method to
relate a QoS setpoint to a tardiness setpoint.

D. DVS Actuator mechanism

The actuator of the control system is based on dynamic
voltage scaling (DVS). Changing the voltage and frequency of
all L2 and L3 servers, we can speed up the system, pushing
the average tardiness to values closer to zero or slow down
the system, resulting in bigger average tardiness.

Our goal is to maintain the voltage/frequency at the lowest
level that maintains the QoS at the specified level. Because the
controller outputs a continuous value and because every DVS
capable processor has discrete levels of voltage and frequency,
we adopted a periodic switching DVS scheme to match the
speed of the continuous actuator. Our scheme consists of
switching between the two discrete values adjacent to the
desired continuous value, as proposed in [8]. To implement
this scheme, a high priority daemon executes periodically with
a duty cycleα.

To implement a controller with single output, we used a
frequency scaling factoru output by the QoS controller, which

QoS
setpoint

A(s)

+

++
K(s) G(s)

Statistical
Inference

+

tardiness setpoint

average tardiness
w(t)

v(t)

y(t)
u(t)

Fig. 1. Control logic block diagram

is multicast to all L2 and L3 servers, and each server nodei

calculates its desired frequencyfi given by fi = u(Fmax −
Fmin)+Fmin. The duty cycle of the DVS mechanism isα, so
thatα||fi||

−+(1−α)||fi||
+ = fi, where||fi||

− is the highest
available discrete frequency smaller thanfi, and||fi||

+ is the
lowest available discrete frequency bigger thanfi.

III. C ONTROL LOGIC

Figure 1 shows the control logic block diagram adopted.
As suggested in [9], we model the noise as the input signal
w(t); in our model, noise is present in the measure because
of the stochastic nature of the workloadv(t) (the process
disturbance), which will cause the randomness present in
the tardiness measure. The controller output isu(t), and the
transfer functionK(s) of the controller has a minus because
it has to invert the output related to the input error. When
the error is negative, thep-quantile for the QoSp is bigger
than 1.0, and the deadline miss ratio is bigger than1 − p,
and therefore the server must increase the speed.G(s) is the
unknown plant transfer function; we will measure its dynamics
in Section IV-B.A(s) represents the averaging included in the
control variable.

We have used in [3] a simple PID controller given by
K(s) = kP + ki

s
+kDs. To improve it, as suggested in [10], we

insert a lowpass filter in the derivative part to make it reduce
the noise, and we change the parametrization of the controller
as proposed in [10]. With only the lowpass filter, the controller
becomes:K(s) = kP + ki

s
+ kDs

1+sTf
. The new parametrization

will use the four parameters: dumping factor (ζ), derivative
filter factor (β), integral gain (ki), and zero time constant (τ).
The advantage of using these parameters is better stability,
because it reduces the freedom of the traditional parameters in
a way that the controller is easily kept in a stable region. This
parametrization also makes the controller tuning procedure
easier. The resultant controller is:

K(s) = ki

1 + 2ζτs + τ2s2

s
(

1 + s τ
β

) (2)

whereβ = k∞

τki
, andk∞ = lim

s→∞

K(s).

The damping factorζ dictates the responsiveness of the
controller. With a increasedζ, the system becomes slower
to achieve steady state, and with a smallζ, the overshoot
increases. The zero time constantτ is dependent on the plant
dynamics. In [9] a very simple method of tuning the controller
is to makeτ = T

3 , whereT is the time constant of the plant

(for a first order plant, the time the output takes to achieve
63.2% of the input in the step response). The filter factor
β is related to the high-frequency gain, or control activity,
k∞ = βτki. If β is small, the system may lose control
activity and perform as if in a positive retrofit (see SectionIV).
Increasingki will increase the performance of the controller.

For the controller, we implemented Equation 2 in the
discrete domain. We used the backward difference, given by
1 − sTs = z−1, that is obtained from a first order series
approximation to thez−transform, withTs being the sampling
period. The controller equation relating the discrete output uk

to the discrete errorek becomes:

K(z) =

ki

Ts + 2ζτ + τ2

Ts
−

(

2τ2

Ts
+ 2ζτ

)

z−1 +
(

τ2

Ts

)

z−2

Ts + τ
β
−

(

Ts + 2 τ
β

)

z−1 +
(

τ2

Ts

)

z−2
(3)

The discrete equation obtained by straightforward manipu-
lation of Equation 3 is in the recurrence formula in Equation4.

uk =
(βTs + 2τ)uk−1

βTs + τ
−

τ2ki (uk−2 − ek−2)

Ts

(

Ts + τ
β

) +

(

Ts + 2ζτ + τ2

Ts

)

kiek

Ts + τ
β

−

(

2τ2

Ts
+ 2ζτ

)

kiek−1

Ts + τ
β

(4)

IV. EVALUATION AND SENSITIVITY ANALYSIS

In this section we present a set of experiments with the
controller. The first step is to measure the process dynamics
in open loop and then tune the controller accordingly. We
adopted the tuning procedure given by Equation 11 of [9].
For the closed loop, all tests use a QoS setpoint of0.95.

A. Process Dynamics

We adopt the first order plant with delayG(s) = k e−sLd

1+sT
,

whereLd is the lag delay, or the time it takes for the output
to change after a step response, andT is the time constant.

We will show results (how the process dynamics change) for
two different time windows for computing average tardiness
(which are also the sampling periodTs). We will use an
average of10 seconds plus an additional filter with constant
Tf = 10s, and to test bigger averages, we use window
average of30 seconds plus an additional filter with constant
Tf = 30s (a sampling period and average of30 seconds was
also used in [11]). This lowpass filter in the measurement is
required for smoothing and improving the measurement of the
control variable. With this averaging scheme implemented,we
measured the step response for both cases, and the result is in
Figure 2. We will use this figure in the next section for fitting
with the plant model adopted.

B. Tuning

We did curve fitting from the results in Figure 2 to extract
the parameters of the plant model. We obtainedLd = 10s,
T = 12s, and k = 0.35 for the 10s case andLd = 30s,
T = 36s, and k = 0.33 for the 30s case. Applying these

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350

 Min

 Max

A
ve

ra
ge

 ta
rd

in
es

s
(d

im
en

si
on

le
ss

)

D
V

S
 o

ut
pu

t

Time (s)

DVS output
Average 10s; T_f = 10s
Average 30s; T_f = 30s

G(s) = 0.35e
−10s

1+12s

G(s) = 0.33e
−30s

1+36s

Fig. 2. Step response in open loop, for10s average withTf = 10 s and
30s average withTf = 30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.4

-0.2

 0

 0.2

 0.4

O
u

tp
u

t
(u

)

E
rr

o
r

(e
)

Controller output
Controller error

zero

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600
 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
v
e

ra
g

e
 T

a
rd

in
e

s
s
 (

d
im

e
n

s
io

n
le

s
s
)

Q
o

S
 (

d
im

e
n

s
io

n
le

s
s
)

Time (s)

QoS
Tardiness

Fig. 3. Control performance with10s average

values to the tuning rule described by Equation 11 of [9], we
obtainζ = 0.83, τ = 6.52, ki = 0.29, andβ = 3.91, for 10s

case, andζ = 0.83, τ = 19.56, ki = 0.10, andβ = 3.68, for
the 30s case. The study in [9] showed that these values yield
closed-loop behavior close to optimal, for first order plants
with moderate time delay. In our case, with10s delay resulted
in good stability, but a30s delay was too large and did not
yield good results (see Section IV-C).

C. Results

The experimentation results are shown in Figures 3, 4,
and 5. In all experiments, the control variable used is not
only the average tardiness, but the average tardiness added
to the confidence limit calculated every sampling interval.
For example, if in one given sampling interval the average
tardiness measured with its confidence interval is0.30±0.05,
the control variable will be0.35 rather than0.30. This is to
guarantee, with the confidence level adopted (95%), that the
QoS will lay above the specified value.

In Figure 3, the tuning rules resulted in stable operation
of the controller with10s average. The QoS measured every
interval remained above, in most cases, the specified value of
0.95, as expected, because we controlled by the confidence
limit. The points close tot = 240s, t = 380s, and t = 510s

with low QoS were caused by load imbalancing that is difficult
to avoid when all servers run almost with full utilization.

Figure 4a shows the30s case. As the lag delay was too

big, the tuning rules failed. With a too smallβ, the integral
part is not sufficient to recover from a negative error. The
effect is of a positive retrofitted system. We solved this by
increasingβ and increasingki, for better performance and
better control activity. The result is in Figure 4b, which also
shows the increase in control activity with higherβ. For the
remaining experiments, one parameter will be changed, while
the others will remain the same given by the tuning rules.

In Figure 5a, we show that increasing the integral gainki,
the performance increases. The curve withki = 0.1 is much
slower than withki = 0.3. However,ki = 1.0 is too big, and
resulted in instability.

Figure 5b shows the effect of varying the damping factor
ζ. As was expected, an increase inζ lowers the overshoot of
the system, but increases the time to reach the setpoint.

In Figure 5c we show the effect of the parameterτ . The
zero constant must be tuned with the plant dynamics. The
valueτ = 6.5 was the value returned by the tuning rule. We
also experimented withτ = 3, which was too small and did
not allow the system to correct the positive error, andτ = 12,
which caused difficulty in correcting a negative error.

In this work we have not shown any energy measurement
because we focused more in the stability analysis and sensi-
tivity to parameters, issues that we could not assess in [3].
In that work we compared the energy consumption with other
interval based DVS mechanisms and we showed that extra
energy savings can be achieved with the fine-grain QoS control
proposed. We did not evaluate, however, the energy-efficiency
of the system during the settling time, which will depend
on the tuning rules. This is not an important issue because
the settling time of150 seconds, observed in Fig 3, about
half the settling time obtained in [11], is sufficiently small to
accommodate the workload variation.

V. D ISCUSSION ANDRELATED WORK

Control theory has been used many times, in the last decade,
as the solution for performance control in computing systems.
A seminal work appears in [12], where the authors change the
paradigm of scheduling, applying control theory to maintain
the performance of the system stable. Moreover, as pointed
out in [1], the computing systems for today’s applications will
rely on control theory to make systems that can achieve the
desired performance objectives.

In this work we followed the general framework for describ-
ing control problems presented in [2]. They use a multi-tiere-
commerce system as illustration and classify the possible con-
trol architectures, includingSISO, MISO, and MIMO, which
refer to the number of inputs and outputs of the controller (S
= single, M = multiple). MIMO, in particular, can be further
divided in centralized and distributed. The authors argue that e-
commerce systems are MIMO by necessity, because the target
system must have multiple inputs in order to achieve multiple
objectives, and must have multiple outputs in order to measure
the multiple objectives (see Fig. 6a).

However, although this classification is very reasonable,
there are practical issues to implement the e-commerce web

C

Server 1

Server N

C

Server 1

Server N

(b)(a)

Fig. 6. Comparison with the classification in [2]. (a) The expected MIMO-C
controller for QoS control. (b) The simplified SISO controller implemented

system, and it turns out that it is possible to use a simpler SISO
architecture, as shown in Figure 6b. As the chosen metric to
be used in the controller was the tardiness of web interactions,
and because of the definition of web interaction given by the
TPC-W standard, the MIMO model is not convenient. The
reason is that the TPC-W standard defines a web interaction
as a sequence of several HTTP requests, and the real-time
requirements in this standard determine that a certain level of
QoS must be achieved for the end-to-end service time of each
web interaction. Since the metric must account for the whole
web interaction, and since each of the HTTP subrequests may
be serviced by different L2 server nodes with a certain levelof
parallelism, it is impossible to obtain the response time atthe
server nodes. In our implementation, the centralized controller
runs in the front-end server, where all requests and responses
go through and the end-to-end time is measured.

In [11], different classes of requests are considered. The
actuator does not use DVS, but enforces desired relative
delays among classes via dynamic connection scheduling and
process reallocation, with the goal of providing differentiated
services. That work shows clearly the problem of having an
unpredictable workload: the sampling period used was30s,
and the settling time achieved was270s, which is the time for
the Web server to enter steady state.

QoS control can also be done by sensing QoS directly [13],
[14] rather than by a statistical approach like ours. However,
this may be problematic, because the QoS measure will have
a saturation point in1.0 very close to the desired setpoint.
This asymmetry can cause instability, as we have shown
in [3]. In [13] and [14], they solved this problem with a
more complicated control, based on a second control loop for
the utilization, and the saturation condition of utilization and
QoS was proved to be mutually exclusive. These works use
actuators that change the scheduling of the system, performing
admission control. They also do not apply DVS.

In [15] the authors used a feedback loop to regulate the
voltage and frequency as a means of providing QoS awareness.
Their controller uses utilization as the control variable aiming
to keep it around a derived utilization bound. However, it
differs from our work because their technique is conservative,
providing a QoS guarantee always close to1.0, not controlling
QoS at a fine-grain setpoint. Computing systems with utiliza-
tion control have usually a different goal, which is to enforce
a certain utilization by means of admission control, not DVS,
to prevent overload conditions. Other recent works in this area
are [16], [17], [18], [19].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.4

-0.2

 0

 0.2
O

u
tp

u
t
(u

)

E
rr

o
r

(e
)

Controller output
Controller error

zero

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200
 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
v
e
ra

g
e
 T

a
rd

in
e
s
s
 (

d
im

e
n
s
io

n
le

s
s
)

Q
o
S

 (
d
im

e
n
s
io

n
le

s
s
)

Time (s)

QoS
 Tardiness

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

O
u
tp

u
t
(u

)

β = 10; ki = 0.1
β = 5; ki = 0.1
β = 5; ki = 0.3

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

E
rr

o
r

(e
)

Time (s)

β = 10; ki = 0.1
β = 5; ki = 0.1
β = 5; ki = 0.3

zero

(b)
Fig. 4. Control performance with30s average

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 50 100 150 200 250 300

E
rr

o
r

(e
)

Time (s)

ki = 0.1
ki = 0.3
ki = 1.0

(a)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 50 100 150 200 250 300

E
rr

o
r

(e
)

Time (s)

ζ = 0.5
ζ = 0.8
ζ = 1.5

(b)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 50 100 150 200 250 300

E
rr

o
r

(e
)

Time (s)

τ = 3
τ = 6.5
τ = 12

(c)

Fig. 5. Experimentation with parameterski, ζ, andτ

VI. CONCLUSION

In this paper we showed a practical implementation of a
feedback control loop in a multi-tier web server system for e-
commerce. We used DVS to adjust the system performance to
save energy, but with the QoS specification being guaranteed
by the control loop. We showed practical issues that arise
in the implementation of a controller in a real web cluster
application. The experiments showed that the parametrized
controller is easy to tune, because tuning has a limited degree
of freedom, which helps stability. Our experiments showed an
analysis of sensitivity to the controller parameters that can help
in achieving the best performance for the controlled system.
The fine-grain QoS control showed in this work is useful in
achieving extra energy savings for interval based DVS schemes
where the goal is to meet all deadlines, avoiding overprovi-
sioning the system according to the real-time specifications.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] Y. Diao, J. L. Hellerstein, and S. Parekh, “Control of large scale
computing systems,”SIGBED Rev. Special Issue on Feedback Control
Implementation and Design in Computing Systems and Networks (FeBID
2006), vol. 3, no. 2, pp. 17–22, 2006.

[3] L. Bertini, J. C. B. Leite, and D. Mossé, “Statistical QoS guarantee and
energy-efficiency in web server clusters,” in19th Euromicro Conference
on Real-Time Systems, Pisa, Italy, 2007, to appear.

[4] “http://www.backhand.org,” the Backhand Project.
[5] http://www.tpc.org/, transaction Processing Performance Council.
[6] J. G. Daniel F. Garcia, “TPC-W e-commerce benchmark evaluation,”

IEEE Computer, vol. 36, no. 2, pp. 42–48, February 2003.
[7] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web

traffic: Evidence and possible causes,” inACM SIGMETRICS Intl. Conf.
on Measurement and Modeling of Comp. Sys., 1996, pp. 160–169.

[8] T. Ishihara and H. Yasuura, “Voltage scheduling problemfor dynami-
cally variable voltage processors,” inISLPED ’98: Intl. Symp. on Low
power electronics and design, 1998, pp. 197–202.

[9] B. Kristiansson and B. Lennartson, “Robust tuning of PI and PID
controllers,”Control Systems Magazine, vol. 26, no. 1, pp. 55–69, 2006.

[10] P. Falkman, A. Vahidi, and B. Lennartson, “Convenient,almost optimal
and robust tuning of PI and PID controllers,” in15th IFAC World
Congress, Barcelona, Spain, July 2002.

[11] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “Feedback
control architecture and design methodology for service delay guarantees
in web servers,”IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, pp.
1014–1027, September 2006.

[12] J. A. Stankovic, C. Lu, and S. H. Son, “The case for feedback control
real-time scheduling,” in11th Euromicro Conference on Real-Time
Systems (ECRTS), York, England, 1999, pp. 11–20.

[13] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control
real-time scheduling: Framework, modeling, and algorithms,” Real-Time
Syst., vol. 23, no. 1-2, pp. 85–126, 2002.

[14] S. H. Son and K.-D. Kang, “Qos management in web-based real-time
data services,” in4th IEEE Intl. Workshop on Advanced Issues of E-
Commerce and Web-Based Information Systems, 2002, pp. 129–136.

[15] V. Sharma, A. Thomas, T. F. Abdelzaher, K. Skadron, and Z. Lu,
“Power-aware QoS management in web servers,” in24th IEEE Real-
Time Systems Symp., December 2003, pp. 63–72.

[16] Y. Fu, H. Wang, C. Lu, and R. S. Chandra, “Distributed utilization
control for real-time clusters with load balancing,” in27th IEEE Intl.
Real-Time Systems Symposium, December 2006, pp. 137–146.

[17] X. Wang, D. Jia, C. Lu, and X. Koutsoukos, “Decentralized utilization
control in distributed real-time systems,” in26th IEEE Intl. Real-Time
Systems Symposium, Washington, DC, USA, 2005, pp. 133–142.

[18] X. Wang, C. Lu, and X. Koutsoukos, “Enhancing the robustness of
distributed real-time middleware via end-to-end utilization control,” in
26th IEEE Intl. Real-Time Systems Symposium, Washington, DC, USA,
2005, pp. 189–199.

[19] Y. Lu, T. F. Abdelzaher, C. Lu, L. Sha, and X. Liu, “Feedback control
with queueing-theoretic prediction for relative delay guarantees in web
servers,” inIEEE Real Time Technology and Applications Symposium,
2003, pp. 208–218.

