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Department of Computer Science

University of Pittsburgh
mosse@cs.pitt.edu

Abstract

In this paper we study the soft real-time web cluster ar-
chitecture needed to support e-commerce and related appli-
cations. Our testbed is based on an industry standard, which
defines a set of web interactions and database transactions
with their deadlines, for generating real workload and bench-
marking e-commerce applications. In these soft real-time sys-
tems, the quality of service (QoS) is usually defined as the
fraction of requests that meet the deadlines. When this QoS
is measured directly, regardless of whether the request missed
the deadline by an epsilon amount of time or by a large dif-
ference, the result is always the same. For this reason, only
counting the number of missed requests in a period avoids
the observation of the real state of the system. Our contribu-
tions are theoretical propositions of how to control the QoS,
not measuring the QoS directly, but based on the probability
distribution of the tardiness in the completion time of the re-
quests. We call this new QoS metricTardiness Quantile Met-
ric (TQM). The proposed method provides fine-grained con-
trol over the QoS so that we can make a closer examination of
the relation between QoS and energy efficiency. We validate
the theoretical results showing experiments in a multi-tiered
e-commerce web cluster implemented using only open-source
software solutions.

1. Introduction

The tremendous grow in the Internet usage in the last
decade is in most part due to the increasing importance
that e-commerce and related applications have been showing.
Most people today rely on these applications in their day by
day lives. Because of this growing importance, better models
and more detailed specifications for e-commerce are becom-
ing a new focus of research. In this way, many works have
modeled e-applications with real-time characteristics. For ex-
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ample, [11] shows the real-time requirements of e-commerce,
addressing mainly the timeliness, among other aspects; [26]
presents protocols that can be used to detect when real-time
constraints are violated; and [14] describes a real-time mid-
dleware to support e-commerce applications.

In addition to real-time characteristics, large systems to
host e-commerce applications can show a huge electricity
consumption [20], which means high costs of ownership,
making power management necessary. In [10], for example,
the authors point out that data centers operate at power den-
sities of around100 Watts per square feet. With all the real-
time and energy efficiency issues in mind, architectural chal-
lenges arise when we try to deploy architectures to support
e-applications which also need to satisfy QoS specifications.

The reasons to study energy-efficient web clusters for e-
commerce applications are threefold. First, there is a need
for a boost in e-commerce web servers efficiency, as the main
goals of the e-commerce use in the enterprise are cost reduc-
tion and the creation of competitive advantage, and that is
what makes energy-efficiency mandatory. Second, the num-
ber and variety of e-commerce applications are growing. An
example is the integration and customization of such appli-
cations, such as the idea of web shopping malls, support
for comparative shopping and business-to-business [16]. The
third reason is that the recent work on performance evalua-
tion for web server clusters, specially for power- and energy-
efficiency, has clamored for more realistic test workloads.

Our objective is to have a means of exploring the trade-
off between energy and QoS in complex web systems, and
for this we need to have a fine grain control of the QoS. In-
stead of using a QoS measure based on the counting of missed
deadlines, we use the on-line measurement of tardiness in the
completion time of the requests, because we verified in prac-
tice that counting missed deadlines results in poor accuracy
and broad confidence intervals. Our contribution is the sta-
tistical guarantee that we can achieve for the QoS based on
approximations for the probability density function of thetar-
diness random variable. We show that the average tardiness
is directly related to the QoS. To maintain the user specified
QoS level, we used feedback control logic, based on a PID



controller1; the control variable used was the average tardi-
ness instead of number of missed deadlines. Thus, we can
show the consequences to the system when the QoS is main-
tained in a specified level, which is very important for the
energy efficiency, because a lower QoS level is generally as-
sociated with less resource usage.

We prove the correctness of the proposed theoretical rela-
tion between tardiness and QoS. The performance evaluation
we present in this paper is based on a real implementation
of a web store, using commodity hardware and open-source
software. The workload is from an industry standard transac-
tional benchmark for e-commerce, the TPC-W [13], installed
on a heterogeneous cluster running Linux.

2. Related Work

Several classical papers addressing energy-efficient web
server clusters [8, 9, 15, 21, 22] introduce cluster reconfigura-
tion techniques and local or global DVS policies (for a good
review see [7]). We focus on those that have QoS awareness.

Two works are closest to ours. The first [24] used a feed-
back loop to regulate the voltage and frequency as a means
of providing QoS awareness. Their controller uses utilization
as the control variable aiming to keep it around a derived uti-
lization bound that was shown to be a sufficient condition of
schedulability. As exceeding this bound does not necessarily
imply in missed deadlines, having this utilization bound as
a control set-point achieves good results in guaranteeing the
QoS close to1.0.

The second [23] presents a cluster-wide QoS aware tech-
nique based on local DVS and cluster reconfiguration. They
guarantee a QoS level of0.95 by setting the maximum load of
a server as the maximum number of requests that the system
can handle meeting the95% of deadlines, and always turn on
a new machine when needed to reach this limit. The local
DVS scheme sets the frequency periodically on a10 ms basis
to ⌈Ufmax⌉, and the utilizationU is calculated based on the
current enqueued requests.

Both works [23, 24] do not allow the maintenance of the
QoS at a precise user predefined value. Our work differs from
these two approaches because we apply a statistical inference
solution to guarantee the exact desired QoS level aside from
the fact that our target environment is e-commerce. In addi-
tion, most previous work dealt only with requests with inde-
pendent deadlines, which are not typically representativeof
e-commerce applications.

In [5], feedback control is used to achieve overload pro-
tection, performance guarantee, and service differentiation,
based on the same concept of utilization bound [24], thus
aiming to meet all deadlines. However, that work applies
adaptation of QoS to server side load conditions, where the

1A proportional-integral-derivative controller (PID controller) is a com-
mon feedback loop component in industrial control systems.

controller actuator can offer degraded service levels accom-
plished by content adaptation. The content is preprocesseda
priori and stored in multiple copies that differ in quality and
size. Hence, the approach is different, besides the fact that
their architecture is primarily aimed for static web content.

Similarly, an autonomic system is described in [27] to al-
low administrators to set system properties like QoS. For this,
they apply control theory with complex feedback optimiza-
tion techniques where future environment inputs and the fu-
ture consequences of the control actions are taken into ac-
count during optimization, which is multiobjective including
power optimization goals. The QoS is defined as response
time and is used directly as the controller set-point. However,
the focus is more at the control theory rather than the imple-
mentation of a real e-commerce environment; the workload
is derived from an Internet service provider and they assume
continuous DVS settings. For e-commerce environments, an
average response time goal alone cannot tell much about the
fulfillment of the real-time rules. In this sense, this work is
complementary to ours, because it may be applied to our sta-
tistical inference to achieve the desired QoS proportion.

3. Application and Web Cluster Model

Our cluster model is shown in Figure 1, with a front-end
server acting as a reverse proxy. The front-end is capable of
SSL encryption/decryption, and will distribute the requests to
the web server nodes without encryption between front-end
and web servers.

Internet

Front−end
server

Database
servers

Web users

Server nodes

Figure 1. Cluster model

Our cluster has two layers after the front-end, with the ap-
plication server and web server running at the same machine,
and a second layer for the databases. As the purpose of this
work is to focus on the power management of the web cluster,
we replicate the web store in many database servers to avoid
bottlenecks at that layer.

3.1. TPC-W Benchmark

TPC-W is a transactional web benchmark, produced by the
Transaction Processing Performance Council [1], where the
workload is performed in a controlled Internet commerce en-
vironment. The workload tests several system components
associated with this environments, such as multiple on-line
browser sessions, dynamic page generation, secure connec-
tions, and a database consisting of many tables with a wide
variety of sizes, attributes, and relationships.



A possible environment for the TPC-W is depicted in Fig-
ure 2. The workload is generated by the remote browser em-
ulator, responsible for managing the emulated browsers (EB)
and the emulated sessions. The EBs access the web server
using HTTP and HTTPS connections. The system under test
is composed of three components, the web server for static
pages, the application server for the execution of the applica-
tion (e.g., using PHP), and the database server.

HTTP
HTTPS

EB

EB

EB Web Server
(Apache)

Appl. Server
(Apache + PHP)

DB
Server

(PgSQL)

Figure 2. TPC-W environment
The performance metric reported by TPC-W is the number

of web interactions per second(WIPS). TPC-W specifies14
different interactions necessary to simulate the activityof a
retail store, and each interaction is subject to a deadline that
must be met with a specified QoS (as a percentage of dead-
lines met). There are three different profiles for the test, with a
mix of interactions for shopping, browsing and ordering. The
primary metric (WIPS) is intended to reflect an average shop-
ping scenario with a mix of80% of browsing interactions and
20% of ordering interactions (for a review about the TPC-W
benchmark see [13]).

One aspect of the TPC-W specification is that one web in-
teraction is not composed of a single request, but of a request
to a dynamic page followed by several static requests for the
embedded objects that are part of the dynamic generated page.
Theweb interaction response time(WIRT) is defined by the
time elapsed between sending the dynamic request until re-
ceiving the last byte of the last embedded object. This spec-
ification makes it impossible to measure the QoS locally in
one server node, because each embedded object request may
be sent to different nodes.

In the TPC-W real-time specification, each class of web in-
teraction has a different deadline, as shown in Figure 3, with
a minimum deadline hit ratio defined by the standard as90%
for all classes. Although it is not specified in the standard,a
system should not a priori discard10% of the requests just be-
cause the goal is to service90%, but rather it should attempt to
service all requests and provide for all an equal probability of
meeting the deadline. Also, it is worth to note that these val-
ues for the deadlines include only local area access, according
to the TPC-W specification, so that the Internet access can be
disregarded.

20 3 5 5 3 3 3 5 3 3 3 3 10 390% WIRT Constraint
(deadline in seconds)
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Figure 3. Deadlines as defined by TPC-W

4. QoS Control

The goal of the system is to maintain/control QoS at a cer-
tain level. This can be done by controlling the QoS directly,
as in [19] and [25], but it turned out to be problematic because
with the QoS defined as a ratio of deadlines met to the total re-
quests, a reasonable number of requests is necessary to obtain
narrowed confidence intervals. Furthermore, the QoS will sat-
urate at1.0, causing an asymmetry problem and instability, as
will be shown in Section 6. In [19] and [25], however, they
used a more complicated control, based on a second control
loop for the utilization, that can solve the problem of deadline
miss ratio saturation at0, because the saturation condition of
both controllers are mutually exclusive. In contrast, we pro-
pose to control the QoS based on the average tardiness of the
web interactions. For each web interactioni, we define tardi-
ness by the ratioweb interaction response time(WIRT) to the
respective deadline. That is,tardinessi = wirti

deadlinei
. A more

detailed definition of WIRT will be given in Section 5.2. In
this section we show the relation between QoS and the aver-
age tardiness.

The block diagram for the control logic is shown in Fig-
ure 4. As will be shown in Section 4.1, the user specified
level of QoS is applied to a statistical inference method to ob-
tain the necessary average tardiness for that QoS, and if the
system is kept with this average tardiness, the QoS is statis-
tically guaranteed to be in the specified value. This average
tardiness value is the set-point to the controller.

Statistical
inference

Control
logic system

Web server
QoS

setpoint

average
tardiness

tardiness
setpoint

+

−
error u

Figure 4. QoS control logic block diagram

Described in Section 4.2, our PID controller outputs a sin-
gle frequency scaling factoru to be used to control the DVS
of all the servers. For each server,u specifies the computing
capacity. Whenu = 0, the server will run at the minimum
frequency, and whenu = 1, at the maximum frequency. Any
value in between will cause the server to cycle periodically
between two available discrete frequencies, so that the aver-
age frequency is a value proportional tou (see Section 4.3 for
more details).

4.1. Statistical Inference: Tardiness Quantile
Metric (TQM)

In this section we show some statistical tests of goodness
of fit between the data and the chosen probability distribu-
tions. We study more than one distribution in order to choose
the best approximation. We also present the theoretical QoS
formulation for each distribution.

Using a large dataset, the authors in [12] showed that
web traffic, such as response time, can be modeled using



heavy-tailed probability density functions, which have self-
similarity property, specially the Pareto distribution. We then
verified in practice that e-commerce traffic (i.e., WIRT and
tardiness) do present a probability distribution close to Pareto.
Based on this distribution, we formulated the requirementsfor
the system to meet the specified QoS.

We also propose the use of a second distribution, the Log-
normal, which has two parameters that can be easily estimated
on-line. The intuition behind using the Log-normal distribu-
tion is the fact that the ratio execution time to the deadline
has an unreachable lower limit of0, but has no upper limit,
like some variables usually modeled by Log-normal (e.g., per-
sonal incomes, tolerance to poison in animals, etc) [17].

The QoS and tardiness value are directly related. The
bigger the average relative tardiness, the lower is the resul-
tant QoS. The reason we chose tardiness as a control vari-
able, aside from the problems mentioned earlier, is that tar-
diness does not carry only a boolean information about QoS:
whether the deadline was met or missed, but it is a continuous
value possible to be calculated for each web interaction, and
its value shows how close the execution was to the deadline.
The relation between tardiness and QoS is obtained from the
probability density function for the tardiness value. We de-
rive this relation from thep-quantile calculation, that is, the
tardiness valuex such thatP [X ≤ x] = p. Based on the
tardiness definition, if thep-quantile is1.0, then the QoS is
p. Hence, we call this method of QoS measuringTardiness
Quantile Metric (TQM). In the rest of this section we will
show the QoS-tardiness relationship for both Pareto and Log-
normal distributions.

TQM with Pareto Distribution
In Figure 5, we show the p.d.f. obtained from an exper-

iment run for2, 000 seconds and26, 255 web interactions.
There is a visual fit between the data and the Pareto distribu-
tion, but the Kolmogorov-Smirnov goodness of fit test returns
a maximum value between the empirical cumulative distribu-
tion and the expected Pareto value of0.08, while the threshold
necessary to accept the data as coming from a Pareto distribu-
tion would be0.01. Figure 5 shows that the first bar close to
zero is smaller than the second bar, which does not happen in
a Pareto distribution. However, as we will show later, Pareto
is still a good approximation to use.
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Figure 5. Tardiness p.d.f and Pareto p.d.f.
The representation of a Pareto probability density function

is given byf(x) = k
xk

m

xk+1 , where the parameterk is related to
the averageµ of the distribution byµ = kxm

k−1 , andxm is the
necessarily positive minimum possible value ofX. Note that
the tardiness value has a minimum value of0. For this reason,
we usexm = 1 and the transformationx′ = x − 1. Then we
obtain the following equation for the tardiness distribution:

f(x) =
k

(x′ + 1)(k+1)
(1)

wherek = µ+1
µ

. Let p be the level of QoS desired, that is,
0 ≤ p ≤ 1 denotes the fraction of deadlines that must be met.
We can formulate the following theorem:

Theorem 4.1 (QoS based on Pareto)If the tardiness value,
defined in Section 4, is a random variable with Pareto distri-
bution, a levelp of QoS will be achieved, with a confidence
level of1− c

2 , where1− c is the confidence level for the sam-
ple meanµ obtained from the system, if the following relation
holds:

µ − z c
2

σ√
N

=
1

log2

(

1
1−p

)

− 1
(2)

whereµ is the average value for a set ofN samples obtained
for the tardiness,σ is the standard deviation for the same
set, andz c

2

σ√
N

is the confidence limit for the mean with the
desired significance levelc.

Proof We will do the proof in two parts. First we show that
the right side of the equation represents the value of the real
mean of the data that makes thep-quantile equals1.0. The
web interactions with missed deadlines are those for which
tardiness resulted bigger than1. To havep deadlines met, we
need the probability of0 < tardiness < 1 to bep. Thus we
need

∫ 1

0
k

(x′+1)(k+1) dx = p, resulting in1 − 2−k = p ⇒ k =

log2

(

1
1−p

)

. As the averageµ in a Pareto distribution with

minimum value positioned atx = 1 is given by k
k−1 , with

the transformationx′ = x − 1 we have k
k−1 = µ + 1, giving

k = µ+1
µ

. Solving forµ the equationµ+1
µ

= log2

(

1
1−p

)

,

and adding the confidence limit, we obtain equation 2.
The second part is to consider the confidence level. The

sample meanµ obtained does not represent the real mean of
the data, but in half of the cases where the sample mean is
obtained, this value will fall below the real mean, and for the
other half will fall above. To guarantee the QoS, we need
the real mean below or equal to the right side of the equation.
Thus, if the sample mean is controlled in the lower limit given
by the confidence interval, the unfavorable cases will happen
only in c

2 of the cases. This limit is represented in the left side
of equation 2 by the termz c

2

σ√
N

.

TQM with Log-normal Distribution
Now we will show the same idea for another distribution,

the Log-normal. A data has Log-normal distribution if the
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Figure 6. P.d.f. of ln(tardiness) with the theoret-
ical normal and the Q-Q plot

natural logarithm of the data has a Normal distribution. Fig-
ure 6 shows the histogram of the natural logarithm of the tar-
diness data and the theoretical Normal distribution, and also
shows theQuantile-Quantileplot (right side) obtained using
SPSS [4]. TheQ-Q plot is used to verify the deviation of a
given data to the normality. The normality of the data will
cause a straight line in theQ-Q plot. The plot is showing that
the data is very close to normal, with some variation on both
end tails. We also applied the Kolmogorov-Smirnov good-
ness of fit test in this case and obtained a better fit, with0.03
maximum difference between the measured and theoretical
cumulative distributions, against0.08 for Pareto (same0.01
threshold). Thus, we have the following theorem:

Theorem 4.2 (QoS based on Log-normal)If the tardiness
value, defined in Section 4, is a random variable with Log-
normal distribution, a levelp of QoS will be achieved, with a
confidence level of1 − c

2 , where1 − c is the confidence level
for the sample meanµ obtained from the system, if:

µ − z c
2

σ√
N

σ
= −

√

ln

(

1

1 − p2

)

(3)

whereµ andσ are the average value and the standard devia-
tion of the natural logarithm of the tardiness value, consider-
ing N samples.

Proof Similarly to the Theorem 4.1, we have thep-quantile
calculation and the addition of the same confidence limit. The
proof of the right side of the equation follows. Letf(x) be a
normal distribution with average0 and standard deviationσ.
Let b be the value ofx that results in

∫ b

−∞ f(x)dx = p. We
have to solve:

1

σ
√

2π

∫ b

−∞
e
− x2

2σ2 dx = p

which is solved using the square of this integral equation and
the substitutionr2 = x2 + y2:

∫ b

−∞ e
− x2

2σ2 dx
∫ b

−∞ e
− y2

2σ2 dy = 2πσ2p2

∫ b

−∞

∫ b

−∞ e
− x2

2σ2 e
− y2

2σ2 dxdy = 2πσ2p2

∫

√
b2+b2

0
e
− r2

2σ2 2πrdr = 2πσ2p2

Using u = r2 anddu = 2rdr, we obtain1 − e
− b2

σ2 = p2,

resulting inb = σ
√

ln( 1
1−p2 ). This result is for a normal

distribution withµ = 0. In order to havep of the deadlines
met, we need a shifted normal distribution so thatb = 0,
because the natural logarithm of the tardiness will be less than
0 whenever the deadline is met. Thus, for this to happen,
we need the average of the natural logarithm of the tardiness

to beµ = −σ
√

ln( 1
1−p2 ), which is equation 3 without the

confidence limit.

Discussion
For the TPC-W specification, wherep = 0.9, the tardi-

ness average isµ = 0.43068 using the Pareto distribution,
and the ratioln(tardiness) average to the standard deviation
of ln(tardiness) is µ

σ
= −1.28869. In the Pareto distri-

bution, the on-line estimation of the tardiness average hasa
simpler implementation than in the Log-normal, but both can
be done with a low complexity (O(1) for time andO(N) for
space). We will show results for many values of specified QoS
in Section 6, where we used a confidence limit of2σ√

N
to test

both assumptions, yielding a confidence interval of95.45%
for the sample mean, and consequently97.725% confidence
level that the QoS will be equal or higher than the specified
value.

4.2. Control Logic

We will make use of the classicz−transform methodology
to derive the equations for the control logic. Thez−transform
is used in signal processing to convert a discrete time domain
signal, which is a sequence of numbers, into a frequency do-
main representation. To make this conversion, thez variable,
in the definition of thez−transform showed in equation 4,
must be replaced byz = esTs , wheres is the complex param-
eter of the Laplace transform andTs is the sampling interval.

X(z) =
∞
∑

n=0

xnz−n (4)

In equation 4, wherexn is thenth sample of the signalx,
the signal is composed by the most up to date sample, multi-
plied by z0, the previous sample, multiplied byz−1, and so
on. Thus, this definition can be used to discover the approx-
imate frequency domain representation of a sampled signal.
This is used in control theory to build digital filters with the
same behavior of the equivalent analog filter.

We applied thez−transform to discretize the Laplace
equation of a PID controller, given byG(s) = KP + KI

s
+

KDs, whereKP , KI , andKD are the proportional, integral,
and derivative PID constants, respectively. Using the simplest
approximation2 to find z as a function ofs, we obtained the

2Called the backward difference, which is given byz =
1

1−sTs
, and is

obtained from a first order series approximation to thez−transform



following equation for the controller, which isO(1) in time
and space for implementation.

outk = outk−1 +

(

KD

Ts

+ KP + TsKI

)

errork −
(

2KD

Ts

+ KP

)

errork−1 +
KD

Ts

errork−2 (5)

whereoutk is the kth sample for the output (i.e., the fre-
quency factoru) of the controller, anderrork is thekth sam-
ple for the error, which is the difference between the set-point
and the actual value of the output (see Figure 4). Using equa-
tion 5, it is necessary only to keep in memory the two latest
error values,errork−1, anderrork−2.

The average and standard deviation were obtained by us-
ing a sliding window of sizeN . The implementation isO(1)
in time for both the average and the standard deviation. At
each sample, the average value is updated by the sum of the
new value and the subtraction of the oldest value. The space
complexity isO(N) for both.

As the focus of this paper is not the controller itself, we
will not address it here. In [6] we address the controller show-
ing an analysis of sensitivity to the parameters, and with im-
proved control dynamics applying filters in the derivative part.
Here, for the proof of concept, we use valuesKP = 0.02,
KI = 0.05, andKD = 0.02, and also the number of samples
N = 200 that resulted in good responsiveness and stability.

4.3. Speed Setting

We use a simple DVS scheme that consists in switching
between the two discrete values adjacent to the desired fre-
quency [18]. This scheme is a good solution to the case of a
controller actuator, because it offers a continuous, rather than
discrete, operating point, so that the controller can have acon-
tinuous output. In this scheme, a high priority daemon exe-
cutes periodically with a duty cycleα with the exact width to
stay in the higher frequency, and the remaining of the period
in the lower frequency.

The frequency scaling factoru output by the QoS con-
troller is broadcast to each server node and each server nodei

calculates the desired frequencyfi given byfi = u(Fmax −
Fmin)+Fmin. The duty cycle of the DVS mechanism isα, so
thatα||fi||− + (1−α)||fi||+ = fi, where||fi||− is the high-
est available discrete frequency smaller thanfi, and||fi||+ is
the lowest available discrete frequency bigger thanfi.

5. Implementation Issues

We describe the system components used in the implemen-
tation of our web store on the cluster, and show some imple-
mentation issues not directly related to the QoS control, such
as the request distribution mechanism, important time mea-
surements, and servers turn-on/turn-off policy.

5.1. Hardware and Software

The hardware used in the testbed, summarized in Table 1,
is composed of the front-end, four machines for the web
server tier, and three machines for the database tier, besides
one machine to execute the emulated browsers, in the same
configuration as Figure 1. We chose this configuration so that
we were able to focus on the web/application server layer.
This configuration puts a load, including SSL processing, of
64% on the front-end and about80% on the database servers,
avoiding bottlenecks.

Table 1. Hardware used
Node Function Freq. available (MHz) Specifications

yellow front-end Not applicable AMD Athlon 64 X2 Dual
Core 4200+ 2GB RAM

pm1 web 600, 800, 1000, 1200, Pentium M 1GB RAM
server 1400, 1600, 1800

black web 1000, 1800, 2000 AMD Athlon 64
server 3000+ 1GB RAM

silver web 1000, 1800, 2000, AMD Athlon 64
server 2200, 2400 3400+ 1GB RAM

green web 1000, 1800, 2000 AMD Athlon 64
server 3000+ 1GB RAM

antimony database Not applicable 1 CPU Intel Xeon
3.80GHz 8GB RAM

oxygen database Not applicable 4 CPUs Intel Xeon
3.60GHz 4GB RAM

hydrogen database Not applicable 4 CPUs Intel Xeon
3.60GHz 4GB RAM

The software used was the Apache web server, the PHP
scripting language, and the database PostgresSQL. For the
TPC-W we used the specification compliant implementa-
tion available at the PgFoundry PostgreSQL development
group [2]. The front-end works as a reverse proxy, with the
load-balancing Apache module modbackhand [3], which al-
lows easy addition of new request distribution policies. For
the database, it is mandatory to have a distributed database
solution in this architecture. In spite of that, as our focuswas
to study the power management in the web server layer, we
used multiple databases without replication. In each database,
we deployed an independent web store with10, 000 items and
1, 000 customers each. For example, for a load of600 EBs,
we start200 EBs accessing each independent web store. For
the web servers it makes no difference. That is, any request is
treated equally, and any server is able to process any request,
regardless of what database server will respond to the queries.

5.2. Time Measurements

The main problem that makes the implementation in [23],
and others cited in Section 2, inappropriate to the TPC-W ap-
plication is that we need to have a way to measure the web
interaction response time (WIRT) as a whole, and it is impos-
sible to be made locally in one web server node. The WIRT
is defined by the TPC-W specification as the time from the
sending of the PHP request by the EB until the receiving of
the last byte of the last image embedded in that PHP request.



The problem is that the requests to the embedded objects may
be sent to different web server nodes in the cluster.
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Figure 7. WIRT time components

We measure the approximate WIRT at the front-end, ex-
cluding only the local network time between the EBs and
the front-end. For this, we implemented a new Apache mod-
ule that labels the requests before sending them to the server
nodes, as shown in Figure 7. When the PHP request arrives
at the front-end (e.g., home.php), the module creates a unique
number and attaches it as a new parameter in the URI of the
PHP request. When the web server node receives the request,
it gets the label and puts it, also as a parameter, in every em-
bedded object reference. Each subsequent request for every
embedded object will come with the label to which PHP re-
quest it belongs to. When the request for the last object fin-
ishes, the front-end knows the time for the whole web inter-
action and can compute the QoS and tardiness. We note that
this solution does not modify the client at all, and therefore is
backward compatible with existing systems.

Another implementation issue was that we needed to know
the average CPU time spent, in user space and kernel space,
by each PHP request, for the load estimation in the front-end.
We attempted measuring them with direct measurements, but
the precision is very poor, because the minimum CPU time,
given by a system call called from the PHP script, had reso-
lution of the same order than the execution time itself. Our
solution was to design microbenchmarks using functionality
from the EBs implementation [2], namely to have them gen-
erate specific interactions, in order to exercise each of thein-
teractions separately.

The methodology for the microbenchmarks woks as fol-
lows. During a periodT seconds,Nr requests typer are is-
sued and the CPU achieves an utilizationU . This way, the
average CPU timetr for requestr is UT

Nr
. However, there is a

restriction. The TPC-W benchmark specifies a transition di-
agram with the possible set of transitions allowed after one
specific web interaction, and thus, it is not possible to gen-
erate all kinds of interactions in isolation. For example, the
request to display an order the client has made cannot be is-
sued before the customer actually asks for that order. Sim-
ilarly, the Buy Confirminteraction cannot happen before the
Buy Requestinteraction. For the cases with this type of prece-
dence restriction, we used the average value of the precedent

interaction to calculate the average CPU time of the next in-
teraction. In a sequence ofn interactions, the CPU time of
interactionri, sayti, is given by

∑n

i=1 Niti = UT .
The average value measured by this methodology, with

T = 20 minutes is shown in Table 2. This resulted in about
10, 000 interactions in each measurement. The scriptsad-
min confirmandadmin requestcould not be determined with
precision because they are not requested very often. In a
20-minute experiment, only250 such interactions occurred,
along with40, 000 other precedent interactions. In fact these
interactions are not important, because typical customersdo
not change or administer the database. Their CPU time,
though, is approximately4 ms, measured directly inside the
script for one execution. Again, this measurement is not pre-
cise because the granularity of the time function used is4 ms.

Table 2. Average CPU time (system + user) for
each PHP script

PHP script avg. time (ms) PHP script avg. time (ms)
adminconfirm – new products 5.417
admin request – orderdisplay 5.456
bestsellers 5.578 order inquiry 4.126
buy confirm 6.929 productdetail 4.643
buy request 6.039 searchrequest 4.576
customerreg 4.242 searchresult 5.406
home 5.012 shoppingcart 5.336

5.3. Request Distribution

As the PHP application depends on the session ID that the
server generates and writes in the browser cookies, requests
with the same session ID must go to the same server. This
is implemented by the modbackhand software, and is com-
monly called as a distribution withsticky sessions. The web
request distribution adopted is based on current load, thatis,
the amount of work outstanding at the server. The web request
is sent to the web server with lowest load, providing that the
sticky session rule is not violated. The front-end estimates the
load of each server as follows: for each web request, the aver-
age CPU time is added to the load estimator when the request
arrives at the front-end, and the same value is subtracted after
sending the response to the client.

5.4. On/Off Policy

The policy used to turn servers on and off affects the QoS
control limiting the maximum load of the system and deter-
mining the moment to turn a node on, as in [23]. The dif-
ference is that we use suspend to RAM, and Wake on LAN
and therefore we needed to adopt new values of overhead of
time and energy when turning a machine on and off. In Fig-
ure 8 the activity line is the output of one parallel port pin
measured by the same data acquisition system used to mea-
sure the power (in other words, clock skew is zero). A process
is started at the same time of the command to shut down the
machine (t = 4), switching this output. After that, any state
different than switching (black part) means that the machine



is not operational. It can be seen in the plot that the time
overhead to turn off is the period between7 and10 seconds.
Similarly, the time to turn on goes from18 to 24 seconds.
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6. Performance Evaluation

Before evaluating the proposed method, we will show em-
pirical proofs for the impracticality of controlling the QoS
using a direct measure of the QoS. The plot on Figure 9
shows the QoS being measured in a sliding window of size
sufficient to store10 seconds of web interactions information
about whether it met or missed the deadline. This size was
the biggest size that showed not to compromise the respon-
siveness of the control. The control set-point was set to0.98,
shown in the plot as a reference line. The plot also shows
the control output (u in Figure 4) for the two cases: based on
the direct QoS measure (sliding window), and based on the
tardiness measure (with Pareto distribution).

The first of two problems of measuring the QoS is the
broad confidence interval. The confidence interval in this ex-
periment, not shown in the plot, resulted in values up to0.06.
For 0.98, for example, the confidence interval is0.04, mean-
ing that the real mean will lay between0.96 and1.0. For this
reason, as can be observed in the plot, more often than not the
QoS measure assumes the value1.0 (for example, between
t = 370 andt = 470), even though the real mean value (not
the sample average) is something different, resulting in insta-
bility.

The second problem is that the maximum value of QoS is
1.0. The plot shows several intervals (e.g.,370 < t < 470
andt > 550) where the measured QoS is bigger than the set-
point0.98, giving an error limited to0.02, resulting in a long
decreasing output, because0.02 is too small. After this pe-
riod, in most cases the output reached a position that caused
an error much larger than0.02 (e.g.,t = 250, t = 350, and
t = 530), resulting in a fast increasing of the output. On the
other hand, the curve for the output based on tardiness shows
a more constant behavior, and there is no asymmetry related
to the set-point. Furthermore, the QoS measured in a sliding
window during the control with tardiness is more constant,
although higher than0.98, because of the broad confidence

interval. As a result, the control based on the direct QoS mea-
sure gives periods of high probability of meeting the deadline,
followed by periods where it is more likely of missing the
deadline than the previous period. Even though the final ac-
cumulated QoS for the whole experiment were correct for the
two cases (close to0.98), what is expected is that every web
interaction have the same probability of meeting its deadline,
uniformly, and the use of tardiness achieves this goal. The en-
ergy consumption is higher in the case of controlling the QoS
without tardiness, because of the higher variability of theout-
putu.
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Figure 9. Control using direct QoS measure

The most important evaluation we made is to prove the
correctness of Theorems 4.1 and 4.2, for the Pareto and Log-
normal distributions. We executed the tests with360 EBs, a
number that represents half of full load and requires4 servers
turned on, divided equally into the three database servers and
monitored the QoS obtained for each value of specified QoS.
The obtained QoS (accumulated) was measured by the ratio
missed deadlines

total requests
for each class of web interaction, and the tar-

diness values were from the web interaction class with the
minimum QoS. In other words, the controller is directed to
control the worst QoS among all classes of web interactions.
Although conservative, this is to guarantee that all web inter-
actions will stay with a QoS above the specified limit, as it is
stated in the TPC-W specification.
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Figure 10. Evaluation of the Pareto distribution

The plots in Figure 10 and Figure 11 show average power
and the minimum QoS obtained by our scheme as a func-
tion of the specified QoS when using Pareto distribution and
Log-normal distribution, respectively. The confidence inter-
val plotted is obtained in each measure by the confidence in-



terval for a proportion, given by±1.96
√

p(1−p)
N

, for a 95%
interval, wherep is the proportion, or the QoS measured.
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Figure 11. Evaluation of the Log-normal distri-
bution

The Pareto distribution showed very accurate results for
QoS values not close to1.0. The Log-normal showed an error
approximately constant of0.02, and was consistently worse
for all values. This is because the Pareto distribution has a
better goodness of fit for the tail, which contains most of the
requests with missed deadlines. On the other hand, the log-
normal distribution had the worse fit exactly in both tails.

Both models, based on Pareto and on Log-normal, have
some difficulty to be correct for QoS close to1.0, as it can
be expected examining the theorems. The points in both plots
(Figures 10 and 11) close to1.0 were actually user specified
QoS of0.999. This happens because in the case of QoS1.0
the distributions will have no tail at all.

The TPC-W specifies0.90 for QoS. Normally, when using
the TPC-W to measure an e-commerce system performance,
the number of items in the database must be scaled up until
the server has minimum QoS of0.90, and it is found the max-
imum scaling factor that the system under test can sustain.
Thus, to get TPC-W results the system must be in full load.
Our system, when not at full load, will slow down to stay in a
similar condition of load with the accurate QoS of0.90, and
consequently will reduce the energy cost.

We compared the results, with QoS control based on
Pareto, with the implementation in [23]. We made some
few modifications in that implementation to accommodate the
new real-time model and to support the bigger number of re-
quest types. The first result is shown in Figure 12, where the
TPC-W test was executed for30 minutes, with a load of400
EBs. The QoS in the proposed scheme was set to0.95 ([23]
also had a target QoS of95%). The QoS for [23] is not plot-
ted, because, for this load, the QoS remained very close to1.0
for all requests. The average power for the scheme proposed
in [23] was320.9 W , while it was303.2 W for our scheme.
This shows that our scheme can accurately specify QoS in a
fine-grain manner.

We also compared the new scheme with [23] for several
different loads (see Figure 13), using the specified QoS of
0.95, the same as in [23]. The experiments show that we can
save power by having an accurate control of QoS.

Figure 12. QoS and power in the TPC-W test
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Figure 13. Evaluation of the proposed scheme

In Figure 14 we show that, even though we are focusing
on the web server layer, the energy consumption of the web
servers depends on the load of the database layer. We exe-
cuted the same load in two different scenarios. In the first, all
clients were directed to only one database, and in the second
the clients were distributed to the three available databases. In
the first scenario the database showed almost full utilization,
against about30 percent in the other option. When the load
at the databases is higher, the web server layer has to speed
up to compensate the response time increase at the database
layer. Thus, the question arises on how to cleverly integrate
the power management among the different tiers in a multi-
tiered architecture. Preliminary data suggests that the con-
figuration with 3 DB is better; this evaluation is outside the
scope of this paper and left for future work. Figure 14 also
shows the QoS obtained for both scenarios. We omitted the
confidence intervals for better clarity, because they were su-
perposed. It is important to note that both stayed close and
above the QoS specified at0.95.

The recomended performance metric by TPC-W is WIPS,
which we measured for our proposed scheme and for the
scheme proposed in [23]. For the experiment shown in Fig-
ure 12, the averages were49.79 and54.99 WIPS for our pro-
posed and for [23], respectively. We had10.4% less perfor-
mance, but with a controlled quality of service in a value that
attends the minimum level specified by TPC-W for achiev-
ing customer satisfaction. We used95% in this experiment,
but we can achieve even more power savings with the TPC-W
requirement of90%. The scheme proposed in [23] achieved
better performance because of overprovisioning the system
with respect to the real-time specifications.
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7. Conclusions and Future Work

In this work we presented a scheme to relate QoS to tar-
diness in a multi-tiered e-commerce environment, based on
the statistical distribution of the tardiness of web interactions.
This QoS metric was shown to be very useful because some
practical difficulties arose when we tried to use the measured
QoS in the control. On the other hand, tardiness is a continu-
ous value that can be calculated for each web interaction, and
its value depicts how close the execution was to the deadline.

We proposed two approaches, based on the probability
density function adopted to represent the tardiness data: using
the Pareto distribution and using the Log-normal distribution.
We showed that the Pareto distribution achieves better results
in the accuracy of the resultant system QoS, for values of user
defined QoS not close to1.0, and Log-normal showed to have
a constant error due to differences in the fit of the data to the
distribution. Our proposed scheme using Pareto was shown to
be better than existing schemes like [23] and [24], because it
meets with precision the real-time specification, not overpro-
visioning the system, and thus saving energy. A shortcoming
of our approach is when the goal is to meet all deadlines, the
tardiness would have an upper bound of1, and thus the as-
sumption on the tail distribution does not hold. In this case,
the cited existing schemes would be more precise.

We plan to extend this work to focus also on the database
layer, studying integrated DVS and On/Off schemes in a dis-
tributed database. As we have shown, having more load at
the database layer causes the power consumption at the web
server layer to increase, and thus we need to answer the ques-
tion on how to minimize the overall aggregate power when all
layers are DVS and On/Off enabled.
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