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Abstract ample, [11] shows the real-time requirements of e-commerce

addressing mainly the timeliness, among other aspect$; [26
In this paper we study the soft real-time web cluster arpresents protocols that can be used to detect when real-time
chitecture needed to support e-commerce and related apptionstraints are violated; and [14] describes a real-timg mi
cations. Our testbed is based on an industry standard, whialleware to support e-commerce applications.
defines a set of web interactions and database transactions |, 54dition to real-time characteristics, large systems to

with their deadlines, for generating real workload and benc st e-commerce applications can show a huge electricity
marking e-commerce applications. In these soft real-tiyse s consumption [20], which means high costs of ownership,

tems, the quality of service (QoS) is usually defined as thgaying power management necessary. In [10], for example,
fraction of requests that meet the deadlines. When this Q9% authors point out that data centers operate at power den-
is measured directly, regardless of whether the requesitetis gjties of around 00 Watts per square feet. With all the real-
the deadline by an epsilon amount of time or by a large difyme and energy efficiency issues in mind, architectural-cha
ference, the result is always the same. For this reason, Onllé(nges arise when we try to deploy architectures to support

counting the number of missed requests in a period avoids,ppjications which also need to satisfy QoS specification
the observation of the real state of the system. Our contribu

tions are theoretical propositions of how to control the QoS 1N reasons to study energy-efficient web clusters for e-
not measuring the QoS directly, but based on the probabilifPMMerce applications are threefold. First, there is a need
distribution of the tardiness in the completion time of tae r fOr @ boostin e-commerce web servers efficiency, as the main
quests. We call this new QoS meffardiness Quantile Met- goals of the e-commerce use in the enterprise are cost reduc-
ric (TQM). The proposed method provides fine-grained corion and the creation qf _competitive advantage, and that is
trol over the QoS so that we can make a closer examination §f1at makes energy-efficiency mandatory. Second, the num-
the relation between QoS and energy efficiency. We valida€" @nd variety of e-commerce applications are growing. An
the theoretical results showing experiments in a multietie example is the integration and customization of such appli-

e-commerce web cluster implemented using only open-soufgOns, such as the idea of web shopping malls, support
software solutions. for comparative shopping and business-to-business [16. T

third reason is that the recent work on performance evalua-
. tion for web server clusters, specially for power- and eperg
1. Introduction efficiency, has clamored for more realistic test workloads.

The tremendous grow in the Internet usage in the last Our objective is to have a means of exploring the trade-
decade is in most part due to the increasing importancf between energy and QoS in complex web systems, and
that e-commerce and related applications have been showif@f this we need to have a fine grain control of the QoS. In-
Most people today rely on these applications in their day b§tead of using a QoS measure based on the counting of missed
day lives. Because of this growing importance, better nmodefieadlines, we use the on-line measurement of tardinese in th
and more detailed specifications for e-commerce are becofmpletion time of the requests, because we verified in prac-
ing a new focus of research. In this way, many works havéce that counting missed deadlines results in poor acgurac
modeled e-applications with real-time characteristics. éx- and broad confidence intervals. Our contribution is the sta-
tistical guarantee that we can achieve for the QoS based on
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controllef; the control variable used was the average tardiontroller actuator can offer degraded service levels meco
ness instead of number of missed deadlines. Thus, we cplished by content adaptation. The content is preprocessed
show the consequences to the system when the QoS is mginiori and stored in multiple copies that differ in qualitypch
tained in a specified level, which is very important for thesize. Hence, the approach is different, besides the fatt tha
energy efficiency, because a lower QoS level is generally aheir architecture is primarily aimed for static web coriten
sociated with less resource usage. Similarly, an autonomic system is described in [27] to al-
We prove the correctness of the proposed theoretical rel@w administrators to set system properties like QoS. Fer th
tion between tardiness and QoS. The performance evaluatitirey apply control theory with complex feedback optimiza-
we present in this paper is based on a real implementatidion techniques where future environment inputs and the fu-
of a web store, using commodity hardware and open-sourtigre consequences of the control actions are taken into ac-
software. The workload is from an industry standard transacount during optimization, which is multiobjective incind
tional benchmark for e-commerce, the TPC-W [13], installeghower optimization goals. The QoS is defined as response
on a heterogeneous cluster running Linux. time and is used directly as the controller set-point. Harev
the focus is more at the control theory rather than the imple-
mentation of a real e-commerce environment; the workload
2. Related Work is derived from an Internet service provider and they assume

Several classical papers addressing energy-efficient wegntinuous DVS settings. For e-commerce environments, an
server clusters [8, 9, 15, 21, 22] introduce cluster recandig 2Verage response time goal alone cannot tell much about the
tion techniques and local or global DVS policies (for a goo(julﬁllment of the real-time rules. I_n this sense, _thls WoskK i
review see [7]). We focus on those that have QoS awarene§9mplementary to ours, because it may be applied to our sta-

Two works are closest to ours. The first [24] used a fee(p_stlcal inference to achieve the desired QoS proportion.
back loop to regulate the voltage and frequency as a means
of providing QoS awareness. Their controller uses utiizat 3. Application and Web Cluster Model
as the control variable aiming to keep it around a derived uti our cluster model is shown in Figure 1, with a front-end
lization bound that was shown to be a sufficient condition of ’

- . . server acting as a reverse proxy. The front-end is capable of
schedulability. As exceeding this bound does not necegsar ; : o
imply in missed deadlines, having this utilization bound aSSL encryption/decryption, and will distribute the regsde

: . . ! e web server nodes without encryption between front-end
a control set-point achieves good results in guarantedieg t
and web servers. Server nodes
QoS close td..0.

The second [23] presents a cluster-wide QoS aware tech-
nigue based on local DVS and cluster reconfiguration. They
guarantee a QoS level 6f95 by setting the maximum load of
a server as the maximum number of requests that the system o =
can handle meeting tt#5% of deadlines, and always turn on
a new machine when needed to reach this limit. The local
DVS scheme sets the frequency periodically did ans basis
t0 [U fmaz ], and the utilizatiorl/ is calculated based on the Figure 1. Cluster model

current enqueued requests. Our cluster has two layers after the front-end, with the ap-
Both works [23, 24] do not allow the maintenance of thelication server and web server running at the same machine,

QoS at a precise user predefined value. Our work differs froghd a second layer for the databases. As the purpose of this

these two approaches because we apply a statistical isiereqyork is to focus on the power management of the web cluster,

solution to guarantee the exact desired QoS level aside frafe replicate the web store in many database servers to avoid
the fact that our target environment is e-commerce. In addbottlenecks at that layer.

tion, most previous work dealt only with requests with inde-
pendent deadlines, which are not typically representative 3.1. TPC-W Benchmark

e-commerce applications. . ional hmark h
In [5], feedback control is used to achieve overload pro: TPC-Wis atransactional web benchmark, produced by the

tection, performance guarantee, and service differéntiat Transaction Processing Performance Council [1], where the

based on the same concept of utilization bound [24] thdgorkload is performed in a controlled Internet commerce en-
aiming to meet all deadlines. However, that work app”egwonment. The workload tests several system components

adaptation of QoS to server side load conditions, where t sociated W'_th this envm_)nments, such as multiple ce-lin
rowser sessions, dynamic page generation, secure connec-

LA proportional-integral-derivative controller (PID cooller) is a com- tiOhS, and a database consisting Of_ many tables with a wide
mon feedback loop component in industrial control systems. variety of sizes, attributes, and relationships.

.
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A possible environment for the TPC-W is depicted in Fig4. QoS Control
ure 2. The workload is generated by the remote browser em-
ulator, responsible for managing the emulated browser$ (EB The goal of the system is to maintain/control QoS at a cer-
and the emulated sessions. The EBs access the web seit@t level. This can be done by controlling the QoS directly,
using HTTP and HTTPS connections. The system under te&$ in [19] and [25], but it turned out to be problematic beeaus
is composed of three components, the web server for statéth the QoS defined as a ratio of deadlines met to the total re-
pages, the application server for the execution of the agpli duests, a reasonable number of requests is necessaryito obta

tion (e.g., using PHP), and the database server. narrowed confidence intervals. Furthermore, the QoS will sa
urate atl.0, causing an asymmetry problem and instability, as
s T e will be shown in Section 6. In [19] and [25], however, they
i used a more complicated control, based on a second control
-Appl. Server |~ .Server loop for the utilization, that can solve the problem of dé&aell
. (PgSQL) ) . . : L
: miss ratio saturation &, because the saturation condition of

both controllers are mutually exclusive. In contrast, we-pr

Figure 2. TPC-W environment X trol th S based on th tardi fth
The performance metric reported by TPC-W is the numbé)rose o control the QoS based on the average tardiness of the

i . o web interactions. For each web interactipme define tardi-
OT web |n.teract|0.ns per secor(WIPS).. TPC-W speC|f!e$4 ness by the ratisveb interaction response tinf@/IRT) to the
different interactions necessary to simulate the actioitya respective deadline. That isyrdiness, — i A more
retail store, and each interaction is subject to a deadtiae t (FLC ME R T e S given in Section 5.2. In
must be met with a Spec'f'eq QoS (as a percentage_ of de%ﬁei's section we show the relation between QoS and the aver-
lines met). There are three different profiles for the tegh & age tardiness
mix of interactions for shopping, browsing and orderingeTh The block aiagram for the control logic is shown in Fig-
primary metric (WIPS) is intended to reflect an average shop-

ping scenario with a mix d§0% of browsing interactions and ure 4. As will be shown in Section 4.1, the user specified

20% of ordering interactions (for a review about the TPC-V\{e\./eltﬁf QoSis appliedto a sttatlzycal m;‘er(?tﬂc;a me;hodi;)'(f)th
benchmark see [13]). ain the necessary average tardiness for that QoS, and if the

One aspect of the TPC-W specification is that one web i system is kept with this average tardiness, the QoS is statis

teraction is not composed of a single request, but of a réqu \ re(ljlilze%ia\:zmg?;jtaz t;eet|_n (t)?r(ft fg?ﬁg'ggﬂ‘t’iﬁg This average
to a dynamic page followed by several static requests for t a P '

embedded objects that are part of the dynamic generated page 00 S
The web interaction response tinfgVIRT) is defined by the setpoint | Statistical| setpoint crror_| Control | |Web server
. . . . inference logic system
time elapsed between sending the dynamic request until re- cueroge
ceiving the last byte of the last embedded object. This spec- fardiness
ification makes it impossible to measure the QoS locally in Figure 4. QoS control logic block diagram

one server node, because each embedded object request may ) ) ) ]
be sent to different nodes. Described in Section 4.2, our PID controller outputs a sin-

Inthe TPC-W real-time specification, each class of web indle frequency scaling factar to be used to control the DVS
teraction has a different deadline, as shown in Figure 3) witof all the servers. For each serverspecifies the computing
a minimum deadline hit ratio defined by the standardaé capacity. When, = 0, the server will run at the minimum

for all classes. Although it is not specified in the standard, frequency, and when = 1, at the maximum frequency. Any
system should not a priori discatd% of the requests just be- value in between will cause the server to cycle periodically

cause the goal is to serviea%, but rather it should attempt to between two available discrete frequencies, so that the ave
service all requests and provide for all an equal probgtofit age frequency is a value proportionaktgsee Section 4.3 for
meeting the deadline. Also, it is worth to note that these vamore details).

ues for the deadlines include only local area access, @ogprd

to the TPC-W specification, so that the Internet access can Hel. Statistical Inference: Tardiness Quantile

disregarded. Metric (TQM)

HEEEEREEEEEEREE . . -
A I EIRE E IR R In this section we show some statistical tests of goodness
gwwgwﬂfIg-‘Dﬁ:egg’m . - s
Slel g olLls c| S5 8= & 5 of fit between the data and the chosen probability distribu-
c| £ > [S] = . . . . .
EE 2 3 a8 |28 &8s es tions. We study more than one distribution in order to choose
3|2 2 o ol Gl v o . . .

o the best approximation. We also present the theoretical QoS

atiing in Sashoiei 20| 3| 5| 5| 3| 3| 3| 5/ 3/ 3| 3| 3103 formulation for each distribution.

. . , Using a large dataset, the authors in [12] showed that
Figure 3. Deadlines as defined by TPC-W web traffic, such as response time, can be modeled using



heavy-tailed probability density functions, which havéf-se s given byf(z) = k%, where the parametéris related to
similarity property, specially the Pareto distributioneWen  he average: of the distribution by = kiw  anda,, is the
verified in practice that e-commerce traffic (i.e., WIRT anthecessarily positive minimum possible valueXf Note that
tardiness) do present a probability distribution closed®B.  the tardiness value has a minimum valu@ oFor this reason,
Based on this distribution, we formulated the requireméants \ye yser,, — 1 and the transformation’ = z — 1. Then we

the system to meet the specified Qos. obtain the following equation for the tardiness distribati
We also propose the use of a second distribution, the Log- i
normal, which has two parameters that can be easily estimate flx) = (2)

on-line. The intuition behind usin istA (a/ + 1)+
-line. g the Log-normal distrib

tion is the fact that the ratio execution time to the deadlineherek = 2L, Letp be the level of QoS desired, that is,
has an unreachable lower limit 6f but has no upper limit, 0 < p < 1 denotes the fraction of deadlines that must be met.
like some variables usually modeled by Log-normal (e.g- peWe can formulate the following theorem:

sonal incomes, tolerance to poison in animals, etc) [17]. _
The QoS and tardiness value are directly related. ThEheorem 4.1 (QoS based on Parettf)the tardiness value,

bigger the average relative tardiness, the lower is thd-resefined in Section 4, is a random variable with Pareto distri-
tant QoS. The reason we chose tardiness as a control vatition, a levelp of QoS will be achieved, with a confidence
able, aside from the problems mentioned earlier, is that tavel ofl — 5, wherel — cis the confidence level for the sam-
diness does not carry only a boolean information about Qo$le meary. obtained from the system, if the following relation
whether the deadline was met or missed, but it is a continuof}§!ds:

value possible to be calculated for each web interactiod, an L— ze 7 _ 1

its value shows how close the execution was to the deadline. *VN logo (%) -1
The relation between tardiness and QoS is obtained from the ] -’ ]
probability density function for the tardiness value. We deWherey is the average value for a set 6f samples obtained
rive this relation from the-quantile calculation, that is, the for the tardiness, is the standard deviation for the same
tardiness value: such thatP[X < z] = p. Based on the set, andzgﬁ is the confidence limit for the mean with the
tardiness definition, if the-quantile is1.0, then the QoS is desired significance level

p. Hence, we call this method of QoS measuriragdiness
Quantile Metric(TQM). In the rest of this section we will
show the QoS-tardiness relationship for both Pareto and Lo
normal distributions.

)

Proof We will do the proof in two parts. First we show that
the right side of the equation represents the value of tHe rea
thean of the data that makes thejuantile equald.0. The
web interactions with missed deadlines are those for which
TOM with Par Distribution tardiness resulted bigger thanTo havep deadlines met, we

Q th Pareto Distributio rgeed the probability off < tardiness < 1to bep. Thus we

In Figure 5, we show the p.d.f. obtained from an expe 1 . o0
df, Grrrrodr = p, resulting inl — 27 F=p=>k=

iment run for2,000 seconds an@6, 255 web interactions. €€
There is a visual fit between the data and the Pareto distribysg, (ﬁ) As the average: in a Pareto distribution with
tion, but the Kolmogorov-Smirnov goodness of fit test resurn

a maximum value between the empirical cumulative distribu’ Ny " o
tion and the expected Pareto valu@ o, while the threshold  the transformation’ = = — 1 we havep®; = i + 1, giving
necessary to accept the data as coming from a Pareto distrilju— % Solving for i the equation%l = logs ﬁ)
tion would be0.01. Figure 5 shows that the first bar close toand adding the confidence limit, we obtain equation 2.

zero is smaller than the second bar, which does not happen inTne second part is to consider the confidence level. The

a Pa}reto dlstrlbutlon.. However, as we will show later, Raretsample mean obtained does not represent the real mean of
is still a good approximation to use. the data, but in half of the cases where the sample mean is
> ' ' R obtained, this value will fall below the real mean, and fa th

’ | other half will fall above. To guarantee the QoS, we need
the real mean below or equal to the right side of the equation.
Thus, if the sample mean is controlled in the lower limit give
by the confidence interval, the unfavorable cases will happe
only in $ of the cases. This limitis represented in the left side
of equation 2 by the term, LN |

inimum value positioned at = 1 is given by%, with

Probability density
. N

- o N o
T
L

o
o
1

0 L n L
0 05 1 15 2 25 3

_ _ erdnes vaie TQM with Log-normal Distribution
Figure 5. Tardiness p.d.f and Pareto p.d.f. Now we will show the same idea for another distribution,
The representation of a Pareto probability density fumctiothe Log-normal. A data has Log-normal distribution if the



Normal Q-Q Plot of In(tardiness) . . _u2
Usingu = 72 anddu = 2rdr, we obtainl — e~ =2 = p2,

resulting inb = o ln(#). This result is for a normal
distribution withy = 0. In order to havey of the deadlines
met, we need a shifted normal distribution so that 0,

because the natural logarithm of the tardiness will be leens t

Frequency
o N S

Expected Normal Value
U
N

0 20 13 o oemvedvane . 0 whenever the deadline is met. Thus, for this to happen,
, ) , we need the average of the natural logarithm of the tardiness
Figure 6. P.d.f. of In(tardiness) with the theoret- 1 o . :
ical normal and the Q-Q plot to bey = —o,/in(=5), which is equation 3 without the

confidence limit. ~ §
natural logarithm of the data has a Normal distribution.- Fig
ure 6 shows the histogram of the natural logarithm of the taBiscussion
diness data and the theoretical Normal distribution, asd al  For the TPC-W specification, whefe = 0.9, the tardi-
shows theQuantile-Quantileplot (right side) obtained using ness average i8 = 0.43068 using the Pareto distribution,
SPSS [4]. TheR-Q plot is used to verify the deviation of a and the ratidn(tardiness) average to the standard deviation
given data to the normality. The normality of the data willof In(tardiness) is £ = —1.28869. In the Pareto distri-
cause a straight line in th@-Q plot. The plot is showing that bution, the on-line estimation of the tardiness averageahas
the data is very close to normal, with some variation on bothimpler implementation than in the Log-normal, but both can
end tails. We also applied the Kolmogorov-Smirnov goodbe done with a low complexityd(1) for time andO(N) for
ness of fit test in this case and obtained a better fit, @itB  space). We will show results for many values of specified QoS
maximum difference between the measured and theoretidalSection 6, where we used a confidence Iimit% to test
cumulative distributions, agaithOS for Pareto (Samé.Ol both assumptions, y|e|d|ng a confidence intervab®i5%
threshold). Thus, we have the following theorem: for the sample mean, and consequebfly725% confidence

) level that the QoS will be equal or higher than the specified
Theorem 4.2 (QoS based on Log-normalj the tardiness 4)ye.

value, defined in Section 4, is a random variable with Log-
normal distribution, a levep of QoS will be achieved, with a 4.2. Control Logic

confidence level of — §, wherel — c is the confidence level

for the sample meap obtained from the system, if: We will make use of the classic-transform methodology
- to derive the equations for the control logic. Thetransform
H=25UN — _.|m ( 1 ) 3 is used in signal processing to convert a discrete time domai
o 1—p? signal, which is a sequence of numbers, into a frequency do-

wherep ando are the average value and the standard devia.[naln representation. To make this conversion Aeriable,

) . . ., in the definition of thez—transform showed in equation 4,
tion of the natural logarithm of the tardiness value, coesid T ;
ing N samples. must be replaced by = ¢**+, wheres is the complex param-

eter of the Laplace transform afig is the sampling interval.

Proof Similarly to the Theorem 4.1, we have theguantile _ = .
calculation and the addition of the same confidence limie Th X(2) = ;}xnz “)
proof of the right side of the equation follows. Lgfx) be a . _ "= _

normal distribution with averagé and standard deviation. In equation 4, where,, is then" sample of the signat,

Let b be the value of: that results inffoo f(z)dz = p. We the signalois composed by the most up to date slample, multi-
have to solve: plied by z”, the previous sample, multiplied by ", and so

1 b ) on. Thus, this definition can be used to discover the approx-
/ e 22dy =p imate frequency domain representation of a sampled signal.
oV2T J oo This is used in control theory to build digital filters witheth
which is solved using the square of this integral equatiah anr2me behaylor of the equivalent analpg f||t§r.
Lo g 2. We applied thez—transform to discretize the Laplace
the substitution* = z° + y~*: : . %
equation of a PID controller, given b¥(s) = Kp + =% +
Kps, whereKp, K;, andKp are the proportional, integral,
and derivative PID constants, respectively. Using the Esip

fb e_ﬁdxfb e_%d = 210 2p?
o o Yy

b b =2 v . . . . .

oo [ oo € 27 e 27 dxdy = 2m0*p? approximatioR to find z as a function ofs, we obtained the
Vb2+b2 —L22 _ 2 9

fo e 202 2mrdr = 2m0°p 2Called the backward difference, which is given by= —L—, and is

obtained from a first order series approximation tozhdransform



following equation for the controller, which ©(1) in time  5.1. Hardware and Software

and space for implementation.
The hardware used in the testbed, summarized in Table 1,

+ Kp +TSK1) errory — is composed of the front-end, four machines for the web
T server tier, and three machines for the database tier, dgesid
(2KD n Kp> errore_1 + Kp error_o (5) one .mach.ine to egecute the emulated. brow;ers, ip the same
T T, configuration as Figure 1. We chose this configuration so that
we were able to focus on the web/application server layer.
where out, is the k' sample for the output (i.e., the fre- This configuration puts a load, including SSL processing, of
quency factow) of the controller, andrrory, is thek!™ sam-  64% on the front-end and abogb% on the database servers,
ple for the error, which is the difference between the sétpo avoiding bottlenecks.
and the actual value of the output (see Figure 4). Using equa-

Kp

outy = outp_1 + (

tion 5, it is necessary only to keep in memory the two latest Table 1. Hardware used
error valueserror,_q, anderrory_s. [[Node | Function | Freq. available (MHz) | Specifications ]
The average and standard deviation were obtained by ysyellow | frontend | Not applicable ’é'\o"rfe’ ﬁ;%'gf géézRg“Ma'
ing a sliding window of sizéV. The implementation i®(1) pmi web 600, 800, 1000, 1200, | Pentium M 1GB RAM
in time for both the average and the standard deviation. At server 1400, 1600, 1800
. black web 1000, 1800, 2000 AMD Athlon 64
each sample, the average value is updated by the sum of the server 3000+ 1GB RAM
new value and the subtraction of the oldest value. The spaceilver web 1000, 1800, 2000, AMD Athlon 64
lexity isO(N) for both server 2200, 2400 3400+ 1GB RAM
complexity isO(V) orboth. _ green web 1000, 1800, 2000 AMD Athlon 64
As the focus of this paper is not the controller itself, we____ (Sjervzr . p— iocoga IlGBl )FEAM
. . t \¢ t t
will not address it here. In [6] we address the controllemsho | 2"'Mo™ | ¢atabase | Notapplicable 3.80GHy 8GB RAM
ing an analysis of sensitivity to the parameters, and with im oxygen | database | Not applicable 4 CPUs Intel Xeon
. . . . . . 3.60GHz 4GB RAM
proved control dynamics applying filters in the derivatieetp  — ooerTdampase [ Notappicable 2 CPUs Tnfel Xeon
Here, for the proof of concept, we use valu€s = 0.02, 3.60GHz 4GB RAM

K7 =0.05,andKp = 0.02, and also the number of samples

N = 200 that resulted in good responsiveness and stability. The software used was the Apache web server, the PHP
scripting language, and the database PostgresSQL. For the

4.3. Speed Setting TPC-W we used the specification compliant implementa-
. o __tion available at the PgFoundry PostgreSQL development

We use a simple DVS scheme that consists in swr[chm@roup [2]. The front-end works as a reverse proxy, with the
between the two discrete values adjacent to the desired frl%ad-balancing Apache module méckhand [3], which al-
quency [18]. This scheme is a good solution to the case ofigys easy addition of new request distribution policiesr Fo
controller actuator, because it offers a continuous, ratf@  he gatabase, it is mandatory to have a distributed database
discrete, operating point, so that the controller can ha@a  so|ution in this architecture. In spite of that, as our foas
tinuous output. In this scheme, a high priority daemon exgy, study the power management in the web server layer, we
cutes periodically with a duty cycle with the exact width to - sed multiple databases without replication. In each et
;tay in the higher frequency, and the remaining of the periqge deployed an independent web store with000 items and
in the lower frequency. 1,000 customers each. For example, for a loadsad EBs,

The frequency scaling factar output by the QoS con- e start200 EBs accessing each independent web store. For
troller is broadcast to each server node and each serverinodge web servers it makes no difference. That is, any regsiest i
calculates the desired frequengygiven by f; = u(Finaz —  treated equally, and any server is able to process any reques
Finin)+ Fmin. The duty cycle of the DVS mechanisnisso  regardless of what database server will respond to theagieri
thata|| fil|~ + (1 — )| fil| " = fi, where]| ;]| is the high-
est available discrete frequency smaller tifgrand||f;|| is

the lowest available discrete frequency bigger tlian 5.2. Time Measurements

The main problem that makes the implementation in [23],
5. Implementation Issues and others cited in Section 2, inappropriate to the TPC-W ap-
plication is that we need to have a way to measure the web
We describe the system components used in the implemanteraction response time (WIRT) as a whole, and it is impos-
tation of our web store on the cluster, and show some implsible to be made locally in one web server node. The WIRT
mentation issues not directly related to the QoS contrahsuis defined by the TPC-W specification as the time from the
as the request distribution mechanism, important time meaending of the PHP request by the EB until the receiving of
surements, and servers turn-on/turn-off policy. the last byte of the last image embedded in that PHP request.



The problem is that the requests to the embedded objects miateraction to calculate the average CPU time of the next in-
be sent to different web server nodes in the cluster. teraction. In a sequence efinteractions, the CPU time of
interactionr;, sayt;, is given by> """ | N;t; = UT.

The average value measured by this methodology, with
T = 20 minutes is shown in Table 2. This resulted in about
10,000 interactions in each measurement. The scrauls
min_confirmandadminrequesttould not be determined with
precision because they are not requested very often. In a
20-minute experiment, onl250 such interactions occurred,
along with40, 000 other precedent interactions. In fact these
interactions are not important, because typical customers
not change or administer the database. Their CPU time,
though, is approximately ms, measured directly inside the
script for one execution. Again, this measurement is not pre

We measure the approximate WIRT at the front-end, exéise because the granularity of the time function useldhs.
cluding only the local network time between the EBs and
the front-end. For this, we implemented a new Apache mod-
ule that labels the requests before sending them to therserve

server write 1234

home php in each opject ref.

home.php?REQ=1234
I Front-end \Server nod

PHP request\ roxy DB
proxy accesses

Client DB server

HTML response page
with embeded objects

Embeded objects requests

image,jpg?1234
Requested objects

Web interaction resp. time

étc any
server

Figure 7. WIRT time components

Table 2. Average CPU time (system + user) for
each PHP script

nodes, as shown in Figure 7. When the PHP request arrives [ PRP script avg. time (ms) || PHP script avg. time (ms)
at the front-end (e.g., home.php), the module creates aigniqq | adminconfirm - newproducts 5417

. i adminrequest - orderdisplay 5.456
number and attaches it as a new parameter in the URI of the | pestsellers 5.578 ordetinquiry 4.126
PHP request. When the web server node receives the request; buy-confirm 6.929 productdetail 4.643
. . . buy_request 6.039 searchrequest 4.576
it gets the label and puts it, also as a parameter, in every em- | customereg 4.242 searchresult 5.406
bedded object reference. Each subsequent request for every _home 5.012 shoppingcart 5.336

embedded object will come with the label to which PHP re- L .
quest it belongs to. When the request for the last object fif-3- Request Distribution

ishes, the front-end knows the time for the whole web inter- As the PHP application depends on the session ID that the
action and can compute the QoS and tardiness. \We note taf, e generates and writes in the browser cookies, request
this solution does not modify the client at all, and therefisr it the same session ID must go to the same server. This
backward compatible with existing systems. is implemented by the mabackhand software, and is com-
Another |mpIem§ntat|on ISSue was that we needed to kno?’Honly called as a distribution witkticky sessionsThe web
the average CPU time spent, in user space and kernel spaegy o<t distribution adopted is based on current load jshat
by each PHP request, for the load estimation in the front-enghe amount of work outstanding at the server. The web request
We attempted measuring them with direct measurements, iidtsgny g the web server with lowest load, providing that the
the precision is very poor, because the minimum CPU timgyjq\.y session rule is not violated. The front-end estiméte
gl\{en by a system call called from the PHP S,C”pt{ had '€SP5ad of each server as follows: for each web request, the aver
lution of the same order than the execution time itself. Ouége CPU time is added to the load estimator when the request

solution was to design microbenchmarks using functionality e at the front-end, and the same value is subtracted af
from the EBs implementation [2], namely to have them genéending the response to the client

erate specific interactions, in order to exercise each ahthe
teractions separately. .
The methodology for the microbenchmarks woks as fol§'4' On/Off Policy
lows. During a period” seconds)V,. requests type are is- The policy used to turn servers on and off affects the QoS
sued and the CPU achieves an utilizatidn This way, the control limiting the maximum load of the system and deter-
average CPU time. for request is % However, there is a mining the moment to turn a node on, as in [23]. The dif-
restriction. The TPC-W benchmarkrspecifies a transition dference is that we use suspend to RAM, and Wake on LAN
agram with the possible set of transitions allowed after ongnd therefore we needed to adopt new values of overhead of
specific web interaction, and thus, it is not possible to geriime and energy when turning a machine on and off. In Fig-
erate all kinds of interactions in isolation. For examphes t ure 8 the activity line is the output of one parallel port pin
request to display an order the client has made cannot be reeasured by the same data acquisition system used to mea-
sued before the customer actually asks for that order. Simaure the power (in other words, clock skew is zero). A process
ilarly, the Buy Confirminteraction cannot happen before theis started at the same time of the command to shut down the
Buy Requeshteraction. For the cases with this type of precemachine { = 4), switching this output. After that, any state
dence restriction, we used the average value of the preteddifferent than switching (black part) means that the maghin



is not operational. It can be seen in the plot that the timmterval. As a result, the control based on the direct QoS mea
overhead to turn off is the period betweemand10 seconds. sure gives periods of high probability of meeting the desa]li

Similarly, the time to turn on goes froi8 to 24 seconds. followed by periods where it is more likely of missing the
80 o iew deadline than the previous period. Even though the final ac-
ok Aot = 100 cumulated QoS for the whole experiment were correct for the
60 ktemoeens A S T [Py two cases (close 10.98), what is expected is that every web

s o X ; »‘! 1000 2 interaction have the same probability of meeting its deadli
S sl e deo 2 uniformly, and the use of tardiness achieves this goal. Tike e
g 30 I e 1 oo g ergy consumption is higher in the case of controlling the QoS
2L a0 © without tardiness, because of the higher variability ofdhe
10 b 1 200 putuw.
- e 1y N 1

0
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Figure 8. Overhead of time and energy for turn-
ing on/off the Pentium M server
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6. Performance Evaluation

-
QoS measure for QoS direct control
QoS measure for tardiness control —-—-- - 0.84
Control output using tardiness - - - - -
Control output using QoS =--- - 0.82
Relference Qlos =0.98 [

Before evaluating the proposed method, we will show em- o
pirical proofs for the impracticality of controlling the Go womeme e
using a direct measure of the QoS. Thg pIot' on Figurg 9 Figure 9. Control using direct QoS measure
shows the QoS being measured in a sliding window of size
sufficient to storel0 seconds of web interactions information ~ The most important evaluation we made is to prove the
about whether it met or missed the deadline. This size w&@rrectness of Theorems 4.1 and 4.2, for the Pareto and Log-
the biggest size that showed not to compromise the respdiPrmal distributions. We executed the tests v EBs, a
siveness of the control. The control set-point was sétds, nhumber that represents half of full load and requitegrvers
shown in the plot as a reference line. The plot also showyrned on, divided equally into the three database servets a
the control outpute in Figure 4) for the two cases: based onmonitored the QoS obtained for each value of specified QoS.
the direct QoS measure (sliding window), and based on thid1e obtained QoS (accumulated) was measured by the ratio
tardiness measure (with Pareto distribution). nssel deadlties for each class of web interaction, and the tar-

The first of two problems of measuring the QoS is thaliness values were from the web interaction class with the
broad confidence interval. The confidence interval in this exninimum QoS. In other words, the controller is directed to
periment, not shown in the plot, resulted in values up.€s. control the worst QoS among all classes of web interactions.
For 0.98, for example, the confidence intervalti$)4, mean- Although conservative, this is to guarantee that all weérint
ing that the real mean will lay betwe@rd6 and1.0. For this actions will stay with a QoS above the specified limit, as it is
reason, as can be observed in the plot, more often than not fated in the TPC-W specification.

8

QoS measure assumes the value (for example, between 315

t = 370 andt = 470), even though the real mean value (not 310

the sample average) is something different, resultingstain s 222 . é

bility. | _ I % Lowm
The second problem is that the maximum value of QoSis £ b 0gs =

1.0. The plot shows several intervals (e.§70 < t < 470 g 285 0.94 g

and¢ > 550) where the measured QoS is bigger than the set- < 2s0 0o &

point0.98, giving an error limited td).02, resulting in a long 275 P a1 °°

decreasing output, becaus®?2 is too small. After this pe- 0 e T oo oo o0 T o

riod, in most cases the output reached a position that caused Specified QoS

an error much larger thamo2 (e.g.,t = 250, t = 350, and Figure 10. Evaluation of the Pareto distribution
t = 530), resulting in a fast increasing of the output. On the

other hand, the curve for the output based on tardiness showsThe plots in Figure 10 and Figure 11 show average power
a more constant behavior, and there is no asymmetry relatadd the minimum QoS obtained by our scheme as a func-
to the set-point. Furthermore, the QoS measured in a slidinign of the specified QoS when using Pareto distribution and
window during the control with tardiness is more constant,og-normal distribution, respectively. The confidencesint

although higher thaf.98, because of the broad confidenceval plotted is obtained in each measure by the confidence in-



terval for a proportion, given by-1.96,/21-2) for a 95% T T T Qs observed (Proposed e |
450 Power - Rusu et al. [23] -4 105

interval, wherep is the proportion, or the QoS measured. Powar Proposed
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bution S50 L

The Pareto distribution showed very accurate results for
QoS values not close 0. The Log-normal showed an error

None —+—

— jon
*Rusu et al. [23] (DVS) —*—

Average power (W)
n
e
o

approximately constant @f.02, and was consistently worse Eg glal Ve ——
for all values. This is because the Pareto distribution has a 100 Rusu et al. 23] (ONIOMDVS) —a—
. . . . —— o P d (On/Off+DVS) —e—
better goodness of fit for the tail, which contains most of the o) S [oposeg OWDIDVS) —
. . . 0 01 02 03 04 05 06 07 08 09 1
requests with missed deadlines. On the other hand, the log- Load (%)

normal distribution had the worse fit exactly in both tails.

Both models, based on Pareto and on Log-normal, have
some difficulty to be correct for QoS close t®, as it can In Figure 14 we show that, even though we are focusing
be expected examining the theorems. The points in both plate the web server layer, the energy consumption of the web
(Figures 10 and 11) close 100 were actually user specified servers depends on the load of the database layer. We exe-
QoS 0f0.999. This happens because in the case of Q@S cuted the same load in two different scenarios. In the filist, a
the distributions will have no tail at all. clients were directed to only one database, and in the second

The TPC-W specifie8.90 for QoS. Normally, when using the clients were distributed to the three available datehds
the TPC-W to measure an e-commerce system performandee first scenario the database showed almost full utibrati
the number of items in the database must be scaled up urgdainst abous0 percent in the other option. When the load
the server has minimum QoS @90, and it is found the max- at the databases is higher, the web server layer has to speed
imum scaling factor that the system under test can sustaup to compensate the response time increase at the database
Thus, to get TPC-W results the system must be in full loadayer. Thus, the question arises on how to cleverly integrat
Our system, when not at full load, will slow down to stay in athe power management among the different tiers in a multi-
similar condition of load with the accurate QoS®m$0, and tiered architecture. Preliminary data suggests that time co
consequently will reduce the energy cost. figuration with 3 DB is better; this evaluation is outside the

We compared the results, with QoS control based oscope of this paper and left for future work. Figure 14 also
Pareto, with the implementation in [23]. We made somshows the QoS obtained for both scenarios. We omitted the
few modifications in that implementation to accommodate theonfidence intervals for better clarity, because they ware s
new real-time model and to support the bigger number of rggerposed. It is important to note that both stayed close and
guest types. The first result is shown in Figure 12, where thrabove the QoS specified @b5.

TPC-W test was executed f80 minutes, with a load 0100 The recomended performance metric by TPC-W is WIPS,
EBs. The QoS in the proposed scheme was sei9® ([23] which we measured for our proposed scheme and for the
also had a target QoS 66%). The QoS for [23] is not plot- scheme proposed in [23]. For the experiment shown in Fig-
ted, because, for this load, the QoS remained very clos®to ure 12, the averages wet@.79 and54.99 WIPS for our pro-

for all requests. The average power for the scheme proposgdsed and for [23], respectively. We h&dl4% less perfor-

in [23] was320.9 W, while it was303.2 W for our scheme. mance, but with a controlled quality of service in a valud tha
This shows that our scheme can accurately specify QoS inattends the minimum level specified by TPC-W for achiev-
fine-grain manner. ing customer satisfaction. We us@t% in this experiment,

We also compared the new scheme with [23] for severd@lut we can achieve even more power savings with the TPC-W
different loads (see Figure 13), using the specified QoS oéquirement 0b0%. The scheme proposed in [23] achieved
0.95, the same as in [23]. The experiments show that we cdretter performance because of overprovisioning the system
save power by having an accurate control of QoS. with respect to the real-time specifications.

Figure 13. Evaluation of the proposed scheme
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7. Conclusions and Future Work

In thi IIlZ]
n this work we presented a scheme to relate QoS to tar-
diness in a multi-tiered e-commerce environment, based on
the statistical distribution of the tardiness of web intti@ns.
This QoS metric was shown to be very useful because son%3]
practical difficulties arose when we tried to use the meabsure[14]
QoS in the control. On the other hand, tardiness is a continu-
ous value that can be calculated for each web interactiah, an
its value depicts how close the execution was to the deadlingis]
We proposed two approaches, based on the probability
density function adopted to represent the tardiness datiag u [16]
the Pareto distribution and using the Log-normal distrdout
We showed that the Pareto distribution achieves betteftgsesu
in the accuracy of the resultant system QoS, for values of us
defined QoS not close 00, and Log-normal showed to have
a constant error due to differences in the fit of the data to thé&l8]
distribution. Our proposed scheme using Pareto was shown to
be better than existing schemes like [23] and [24], because f19]
meets with precision the real-time specification, not ok@rp
visioning the system, and thus saving energy. A shortcomingzO]
of our approach is when the goal is to meet all deadlines, the
tardiness would have an upper boundlipfand thus the as- [21]
sumption on the tail distribution does not hold. In this ¢ase
the cited existing schemes would be more precise. [22]
We plan to extend this work to focus also on the database
layer, studying integrated DVS and On/Off schemes in a dis—23
tributed database. As we have shown, having more load at
the database layer causes the power consumption at the web
server layer to increase, and thus we need to answer the qu f&]
tion on how to minimize the overall aggregate power when al
layers are DVS and On/Off enabled.

17]
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