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Abstract

Today’s CPUs consume a significant amount of power
and generate a high amount of heat, requiring an active
cooling system to support reliable operations. In case of
cooling system failures, these CPUs can reduce clock speed
to prevent damage due to overheating. Unfortunately, when
these CPUs are used in a real-time system, a clock control
based on frequency-throttling can cause missed deadlines.

In this paper, we first develop and validate a system-wide
thermal model that can account for various thermal fault
types such as failure of a CPU fan, faults in the case fan
and air-conditioning malfunctions. Then we validate the
thermal model through experimentation and measurements
in AMD Linux boxes.

Our soft real-time power-aware load-distribution algo-
rithm for data centers incorporates a thermal model to min-
imize the number of missed deadlines that can be caused by
thermal faults. We implemented the algorithm in a web-
server farm simulator to test the efficacy of thermal-aware
load-balancing.

Our results show that the new algorithm helps keep CPU
temperatures within the desired thermal envelope, even in
the presence of thermal faults. When thermal faults occur,
our algorithm improves the QoS, at the expense of higher
energy consumption.

1 Introduction

In the mid-90s, many researchers started focusing
on power and energy management, to enable long-lived
battery-operated devices. Some projects focused on saving
energy, and a few of them attempted to control peak power
or temperatures in devices. More recently, it has been real-
ized that temperature plays an important role in the perfor-
mance of applications, in addition to reliability of the mi-
croprocessor itself; as popular anecdotal evidence, a video
from 2001 on Tom’s Hardware site shows what can happen
to a CPU that has no thermal throttling (Intel vs. AMD) [3].

It has also been shown that temperatures have large finan-
cial impact on large companies, because costs with cooling
data centers is very high. Temperature-aware scheduling,
since then, has been more popular with researchers (in both
reliability and energy consumption arenas) and with compa-
nies (IBM recently added a data-center reorganization ser-
vice that deals mainly with power and temperature).

Most of the work done in the area of thermal control has
focused on achieving high throughput while maintaining the
temperatures below a certain threshold [13]. Clearly, throt-
tling can easily achieve temperature control but with perfor-
mance impact, and jobs admitted to a real-time system can
miss deadlines if the real-time scheduler does not take the
throttling mechanism into the account1. Accordingly, re-
searchers in the real-time community have started develop-
ing schemes that satisfy application deadlines, while main-
taining the temperature below the desired threshold [14, 15].

The inspiration for the work reported in this paper comes
from two sources. The first is a project run in conjunction
with Fermi National Accelerator Laboratories; they pro-
vide service to the High Energy Physics (HEP) commu-
nities around the world, providing large compute farms to
process the vast amounts of data collected. The second is
the reported need for power, energy, and thermal controls
that go from a single box to a data-center setting, such as
Google’s installations that contain thousands of machines.

Our first contribution is the development of a mathemat-
ical model to study the thermal behaviors of the servers
in a data center environment. The model is based on the
resistance-capacitance model (RC-model) [9] from elec-
trical circuit analysis and design. We have validated our
new thermal RC model by comparing it with a Linux box’s
thermal characteristics. Our second contribution is a ther-
mal fault model for servers. The fault model includes fail-
ures of cooling fans, can account for external environmen-
tal changes and the shutting down of CPUs caused by the
throttling mechanism. The third contribution is in showing
the application of our thermal model as a building block for

1Since frequency has only a linear relationship with power, without
DVS, a throttling mechanism will produce a large drop in throughput.



larger projects. Toward that goal, we implemented the two
models into a simulator to study the effect of accounting for
thermal events on the design of a load-distribution mecha-
nism in a soft-real-time environment, namely a web farm.

Our use of thermal models honor real-time constraints
while maintaining the temperature within its specified oper-
ational envelope. Our simulation results show that the load-
distribution mechanism with thermal consideration also in-
creases performance of the system because it avoids hard-
ware throttling.

This paper is organized as follows: Section 2 presents
background research on thermal models. Section 3 presents
the thermal model and its validation. Section 4 discusses a
thermal fault model. Section 5 describes the model applied
to a web farm, Section 6 show the results achieved and fi-
nally, Section 7 presents current status and future work.

2 Related Work

There has been a rise in the last five years on thermal
management to address the issues of reliability and perfor-
mance of systems. Cooling requirements are increasing at
almost all levels–CPUs, systems, racks and even entire data
centers. Most thermal management work has been done in
the context of micro-architecture, designing mechanisms to
control the temperature inside the chip. These schemes at-
tempt to distribute the workload among the different pro-
cessing units, so that the chip will be at an even temperature
throughout the execution of its workload. A seminal work
in this area is the simulation of thermal effects at the archi-
tecture level, incorporated into the HotSpot simulator [13].

In [16], a scheduler changes the order jobs are processed
in a CPU to achieve a lower temperature, but no DVS
schemes are used. In [15, 14] temperature constraints are
included in real-time scheduling and dynamic voltage scal-
ing (DVS) is used to achieve a lower CPU temperature, as-
suming the CPU may achieve very high temperatures dur-
ing normal operation. In [1], an online approximation al-
gorithm is developed that minimizes the temperature of the
CPU.

Data center thermal management also has been studied
to mitigate thermal faults, equalize temperature across the
data center, and reduce cooling requirements [6, 11]. These
efforts consider the server as a black box and consider oper-
ation of the rack or entire data center without details of the
server itself, which may cause high temperatures at individ-
ual servers.

Some researchers have modeled the system with respect
to its thermal characteristics. Most use RC models [9] like
we do in this paper, while others utilize a more accurate
but more complex model based on commercial temperature
simulators. Some models focus on the CPU only [12, 16],
while others focus on data centers either with cluster imple-

mentations or blade servers [7, 4]. Most of these models
do not consider thermal faults caused by failures at cooling
mechanisms.

Researchers have also been active in thermal manage-
ment to avoid destruction by excess temperature. CPUs
have implemented [8] mechanisms to protect the chip in
case of inadequate cooling caused by faults or excess heat
production. Some CPU designs allow for overheating but
needs active mechanisms to avoid destruction. Most of
these mechanisms are not designed to be performance ef-
ficient or energy efficient but only provide protection of the
CPU. Those are always reactive in the sense that they are
activated when the temperature goes above a threshold.

Energy-efficient systems [10] are not necessarily
temperature-aware; being more energy-efficient may im-
ply that load is not equally distributed so one server may
be hotter. Being temperature-aware allows for the use of
a server with a thermal fault (e.g., CPU fan failure) even
with reduced capacity, maintaining higher throughput but
not overheating it. In [4] a thermal-aware load balancing
algorithm is presented but only utilizes turning servers off
as the mechanism to manage energy, while we also consider
DVS in each server and distribute requests to be more en-
ergy efficient.

In summary, we fill a niche for two reasons. First, pre-
vious works do not model thermal faults while we con-
sider normal and faulty operation. Second, other works
do not consider thermal characteristics (including faults)
and energy-efficiency requirements simultaneously, while
we combine them for a distributed soft real-time system.

3 The Thermal Model

This section describes the RC-thermal model for real-
time server farms. The idea of using RC models for de-
scribing temperatures is not new [9], but the novelty of our
RC-thermal model is twofold. First, it is able to describe,
in a single composable framework, the thermal characteris-
tics of the CPU, the server (containing one or more compo-
nents), and the entire server farm with a natural composi-
tion scheme. Our model uses a small number of elements,
which is essential for online computation of the model due
to its low complexity, and for using it for prediction of fu-
ture temperature based on current state and load levels. It
is not as accurate as a CFD model [2], but its measured ac-
curacy was within 2oC for the system tested at all times.
Second, our model incorporates not only the heat genera-
tors but also the heat absorbers (e.g., the heat sink, the CPU
fan, etc) and the behavior of the thermal characteristics of
the component when such heat absorbers fail.

We present a validation of the model by comparing it
with actual measurements in a Linux box, and show that
the mathematical model adequately represents the thermal



characteristics of the Linux farm.

3.1 The RC thermal model

The RC-thermal model is derived from a simple RC-
electrical model. Table 1 shows the equivalence of concepts
of the thermal RC model and the electrical RC model: we
take current to represent heat transfer and current sources
are heat producers. This equivalence is possible because
the same equations apply in each model. As an example:
Ohms law R = V/I has a equivalent thermal equation as
Rthermal = T/H .

Table 1. Comparison of Thermal Model to Electrical
Model

Thermal Model Electrical Model
Temperature T (oC) Voltage V(Volt)

Heat Transfer H (Watt) Current I (Ampere)
Resistance R (oC/Watt) Resistance R (Ohms)

Capacitance C (Joule/oC) Capacitance C (Coulomb/Volt)
Heat producer Current source

Constant temperature Voltage source

A thermal resistance represent the difference in temper-
ature necessary to transfer a certain amount of heat, the unit
for resistance is oC/W . Physical properties such as the ma-
terial types of the components in the system and the size,
shape, surface area and the volume of the components have
big impacts on this value. A heatsink is designed to have
the lowest thermal resistance value so it can transfer a large
amount of heat without requiring a large difference in tem-
perature, so it has a large surface area.

In the model, a capacitor represents stored heat and it is
represented with Joules per oC, i.e., J/oC. The capacitance
measures the amount of energy that is stored or removed to
increase or decrease the temperature of an element. Ca-
pacitance depends mostly on the heat capacity, type of the
material, and the mass of the specific component. For ex-
ample, a heatsink normally has a large capacitance, whose
C (capacitance) value depends foremost on its weight and
type of the material (e.g., copper or aluminum).

The above mappings allow us to describe the thermal
properties as a system of linear differential equations, a
common practice among circuit designers and electrical en-
gineers in general. Our claim is that this very simple ther-
mal RC model, described by a system of differential equa-
tions, can predict the dynamic behavior of real-time com-
pute farms, as shown below.

Figure 1. An example of the thermal RC model.

Figure 1 shows a simple example with the thermal char-
acteristics of the CPU, box (entire computer), and the out-
side (room/environment). In the figure, a node is the inter-
section of the lines, depicted as dots near the TCPU, TBOX
and TOUTSIDE). In essence, a node is a component or
composition of components.

With the following model, we will be able to compute
the temperatures at each component, as a function of load
and current state, assuming a linear relationship between
load and power dissipated. Let t be time, T k

i temperature
at node i at instant k, Ci the thermal capacitance at node
i, Ri,j the thermal resistance between nodes i and j, Hk

Ri,j

the heat flowing through thermal resistance Ri,j at instant
k, Hk

Ci
the heat flowing through thermal capacitance Ci at

instant k and Hi as the heat being produced or removed at
node i.

Equations 1, 2, and 3 are valid for each node in the cir-
cuit. Equation 1 represents the conservation of heat, that is,
it means that heat cannot be destroyed or created in a node.
Equation 2 is the ohms law thermal equivalent. Equation 3
represents the capacitor behavior, that is, the ability of the
component to absorb heat.

Using Equation 2, for each node i and all nodes j that a
thermal resistance Ri,j exists, we can compute Hk

Ri,j
. Us-

ing Equation 1, Hk
Ci

can be computed since all values of
Hk

Ri,j
have been computed before and Hi is a constant.

∑

j

Hk
Ri,j

+ Hk
Ci

+ Hi = 0 (1)

Ri,jH
k
Ri,j

= (T k
i − T k

j ) (2)

Ci
dT k

i

dt
= Hk

Ci
(3)

Equation 4 below is a discretized version of Equation 3.
Equation 4 will be used to compute the temperature at in-
stant k+1 from the temperature at instant k. Essentially, the
model consists of the 3 equations above, and to compute the
temperature of a node, this process (equation 4) is repeated
iteratively for each interval ∆t, for all nodes in the system,
until obtaining the temperature at the desired instant or a
threshold is reached.
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Figure 2. Temperatures of CPU and case (box) when
C = 2J /oC. Compare with Figure 3, and note the
rate of temperature increase is much faster.
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Figure 3. Temperatures of CPU and case (box) when
C = 20J /oC. Compare with Figure 2, and note the
rate of temperature increase is much slower.

T k+1
i = T k

i +
Hk

Ci
∆t

Ci
(4)

To illustrate the effect of the values of the R and C pa-
rameters, consider the model in Figure 1, but with two
different values of the box thermal capacitance: 2J/oC
and 20J/oC. In this example, the initial conditions are
Tcpu = 50◦C and Tcase = 20◦C. These two scenarios
(two box thermal capacitances) represent the rate of tem-
perature increase of the box: the higher the thermal capaci-
tance, the slower the rate of temperature increase, that is, the
higher the capacity of the box to absorb heat. In these sce-
narios, the time constant (i.e., the time it takes for the CPU
to achieve its highest stable temperature) changes from 100
seconds to 1,000 seconds as shown in Figures 2 and 3, re-
spectively, even though the final temperature is the same.
Note that the difference of temperature between the CPU
and box is kept constant after 100 seconds. This shows that
for large values of time the CPU capacitance has little ef-
fect on the temperature of the CPU, in contrast to the BOX
capacitance. This can be used to identify situations such as
the CPU temperature as seen in Figure 3: a sharp jump in
temperature up to time 10, followed by a slower increase.

3.2 A Compositional Thermal Model

Based on the RC model above for a single component,
we compose components of the CPU, the disk, and other
parts, to model an entire server. Figure 4 shows a simplified
but an accurate model for temperature variations. In this
model, the dissipated power (heat generated) of the CPU
is not constant but varies between the values of 10.53W to
46W as measured in our server. The power supply has a
nominal efficiency of 75% at 300W, so its dissipated power
is modeled as a static part (22W), and variable part pro-
portional to the power consumed by the other elements,
0.24 ∗ Pconsumed as shown in Figure 4. To compute the
proportionality factor, k, we solve the following equation:
PS dissipated power = static part + k· consumed power,
where consumed power is the power consumed by all com-
ponents in the computer. In our meaurements, this becomes
300 · .75 = 22 + k · 225 and thus k = 0.24.

The case model represents the air inside the case and its
metal frame. Since all other elements CPU, disk, mother-
board are inside the case, all their heat has to pass through
the case to go to the outside environment. Notice also that
in the model for the case, the 12.63W source represents the
power consumed by other components (e.g., video card and
other elements). The power supply is positioned outside the
thermal model of the case because it has its own fan that
removes heat to the environment directly and not sending
hot air through the case, bypassing the case fan and air. The
two switches in the figure (labeled Fanl) will discussed in
Section 4.

As illustrated above, this model allows us to create any
type of systems or data centers. In this case a simple rack
that assumes independence of each server is used, so each
server has a fixed enviroment temperature of 25oC.

3.3 Validation

We used a commodity PC to validate the thermal model,
with the following specification: Athlon64 3000+ with
512KB cache using AMD cooler, an internal temperature
sensor available via lm sensors, 1GB of DDR PC3200
RAM, a motherboard Abit KN8 with Nforce 3 chipset with
an internal temperature sensor, a 80GB PATA driver, and a
DVD-ROM. The server case has a temperature sensor that
can only be read thru an external LCD on the case. Fi-
nally, the system runs Gentoo Linux 2006.0, kernel 2.6.16-
gentoo-r9.

In order to validate the model, we needed to come up
with the values for the constants in the model (the values
are shown in Figure 1). For that, we did a first estimation
of the constants from the component specifications (when
possible and available), from similar components specifica-
tions, from the characteristics of the components (e.g., es-



Figure 4. Thermal model for a server (in a mid-
tower case).

timation of the thermal capacitances of the heatsinks was
simple: we weighed the heat sink and computed the value
for a 300-gram body of aluminum).

With this first approximation, we created microbench-
marks that increased and decreased the CPU load from 0 to
100% and then from 100% to 0. We then measured (using
the instruments described above) the temperatures through-
out the experiments. Figures 5 and 6 show the server (CPU
and case) temperature when the CPU load goes from 0 to
100% and then when the load is dropped from 100% to 0,
respectively.

This process, as any validation process, suffers from
the inaccuracies in the model, in the measurements, and
in the assigned values of the constants. The mathemati-
cal model suggests that the temperature increases and de-
creases exponentially. We have performed curve-fittings on
the collected CPU temperatures and the curve resembles
∆T (1− exp−0.01×t) + T0, well matching what the mathe-
matical model suggests.

After the adjustments of the constant values, we exper-
imented extensively with different loads, initial tempera-
tures, environment conditions (colder vs. warmer room tem-
peratures, open vs. closed cases, etc). All the validations
matched the mathematical model within 2oC.

4 Thermal Fault Model

In this section we examine the effects of failures of cool-
ing devices on the temperature of components (directly re-
lated components as well as other components). Fault de-
tection is assumed to be done externally to the model, in
case of fans by directly monitoring the fan rotation speed.
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Figure 5. The system load is increased to 100% from
0% at T=0, and the CPU and the case/box tempera-
tures increase logarithmically.
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Figure 6. Temperature variation when the system
load is decreased to 0% from 100% at T=0. The CPU
and the case/box temperatures decrease logarithmi-
cally.

The thermal RC model suggests different constants when a
fault is present and in order to validate the model, we mea-
sured the temperatures for the two most common cooling
problems: CPU fan failures and case fan failures. These
models with faults were compared to the model for normal
operating conditions and the difference were mapped. The
two cases mapped to only change of value for two specific
components of the thermal model: (a) for CPU fan the ther-
mal resistance had its value multiplied by 4.7 when a failure
occurs, which means that it is almost 5 times harder to re-
move heat from the CPU when there is no CPU fan; (b) for
the case fan, the value for its thermal resistance doubled,
yielding a much less dramatic increase due to the volume of
air already in the case. This result is intuitive since the fans
are used to increase the amount of heat that can be removed
from the heatsinks, a fan failure diminishes this amount.
Therefore, we chose to model such faults as a increase of
a thermal resistance. To represent it, we added switches in
the CPU and case circuits in Figure 4.

The two switches in the figure (labeled Fanl) model the
failure of the CPU and case fans, and its correspondent
parameters value change. Since the thermal resistance in-
creases when a fan fails, it is represented as a open switch
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Figure 7. The temperature behavior when a thermal
fault happens and when there is no failures. The top
curve depicts a fan failure, increasing the temperature
steeply. Even after the load is dropped, the server
takes longer to cool down.

so the value is only one resistor, when the switch is closed
two resistors are in parallel decreasing the total value repre-
senting the improved heat transfer.

Figure 7 shows an example of the behavior of the tem-
perature in case of a case fan failure. In the graph, at time
4,000, the server has a case fan failure. If no migration
is considered (e.g., all other servers have 100% load), the
server’s temperature increases very quickly as shown. Even
when the load is completely removed at around time 6,000
from the faulty server and at time 7,000 for the other servers,
it takes a much longer time for the temperature of the fault
server to decrease than the others servers since its heat re-
moval capacity is impaired.

Fault detection can also use this model by comparing
temperature measurements with values predicted using the
model, any discrepancy above certain threshold indicate a
problem. Fault isolation is done by not allowing the system
to overheat but still using the failed system.

5 Experimental Setup and Models

We performed experiments with the thermal model pre-
sented in Section 3.3 and with a real-time power-aware sim-
ulator based on [10]. We simulated the operation of a web
server farm composed of three homogeneous servers and a
front-end. Our objective is to show the dynamic thermal
behavior of the servers when cooling failures happen. We
kept the size of the cluster small so that the impact of a sin-
gle server failure can be easily observed with respect to the
temperature. Each server is simulated with characteristics
described in Table 2.

The load value of 1.0 is the request rate that, on average,
consumes 100% of the CPU power. Even though the ex-
pected maximum load of the server farm is 3.0 (each server
supports individualy a load of 1.0), we defined the maxi-
mum load to be 2.5 for our tests. This is because when a

Table 2. Server simulation parameters

Parameter Value
CPU type Athlon 64 3000+

CPU frequencies 1, 1.8, 2 GHz
AC Standby (Off) server 8W
AC Static power at 1GHz 69W

AC Full load power at 1GHz 76W
AC Static power at 1.8GHz 73W

AC Full load power at 1.8GHz 100W
AC Static power at 2GHz 76W

AC Full load power at 2GHz 113W
Turn-on time 20s

Turn-on energy 1500J
Turn-off time 10s

Turn-off energy 800J
Maximum load without CPU Fan 0.5
Maximum load without Case Fan 0.9
CPU Speed change time overhead 1ms

CPU Speed change energy overhead 20J
Maximum CPU temperature 70°C

failure occurs, a server is only able to support a load of 0.5
(as explained below). Also, following [10], we turn a new
machine on when the current set of active servers (those not
off or waking up) cannot handle the load. Notice that this
is a predictive and conservative mechanism: we turn a new
server on before the load saturates the current set of servers,
based on the maximum load rate increase allowed for the
cluster. In the systems tested, a maximum rate of increase
in load is set to 0.3%/sec (load increase of 0.04 every 5sec).
At this rate, the amount of load that can appear in the system
before another server can booted up is 0.16. This means a
new server will be turned on when the load is above 0.84.

The simulator is event based. In order to preserve the
accuracy of the thermal model, a maximum time interval
is allowed between temperature re-computations (i.e., if no
event occurs for a time interval δ, we insert a “compute tem-
peratures” event). The value of δ is calculated to let the tem-
perature to vary at most 1% between events; in our current
setup, ∆t = 10ms (see Equation 4). The thermal-throttling
of the CPU was not included in the simulator, to show what
happens to the temperature when thermal awareness is not
included in the algorithm.

The simulator implements a non-preemptive power-
aware load-balancing algorithm [10] with a centralized
front-end that distributes requests to the servers. Two power
saving methods are used: (a) on-off control at the front-
end, to determine the number of servers for the next period
based on the load in the previous period; and (b) DVS con-



trol at the local server, emulated by computing the utiliza-
tion while accounting for awaiting requests and adjusting
the speed to keep the utilization smaller than 100%.

The load balancing algorithm uses a power profile for
each server. At each period, the load of the last period
is used as a estimate for the next period. The load is dis-
tributed to the active servers based on the energy efficiency
of the servers. Each server has a maximum load it can han-
dle. This method creates a more power-efficient distribution
even though it may not divide the load equally.

Application To focus our study on the web-servers, we
assume that the front-end load distribution and the back-end
database layers are powerful enough, producing no bottle-
necks.

In order to verify the thermal fault model, we consider
a web-server with a very high request rate–thousands of re-
quests per second. Web page requests are typically com-
posed of a dynamic part and a static part, or a combi-
nation thereof, which combine information from different
sources. Another similar application is a telephone switch
that routes toll-free calls. Toll-free numbers typically get
mapped to another landline and therefore a new number
must be looked up within a very short deadline in order to
route the call correctly. One of the characteristics of our
traffic is probably prevalent in most web-sites: a very high
variance at CPU consumption for each request and over
time. Also, note that the short web-page requests in respect
to the thermal time constants ensure that the thermal con-
trols of the type discussed in this paper can be applied at the
front-end only, through an admission control and a careful
server selection procedure2.

The traffic applied to the web farm is a mix of
both static and dynamic web requests. The execution
time of the requests is based on the traffic recorded at
www.cs.pitt.edu. This traffic was classified into static
and dynamic requests. A reference machine, an Athlon
3000+ at 2GHz, was used to characterize the requests in
terms of CPU consumption. The static requests were di-
vided into 15 different types with execution times varying
from 0.35ms to 0.9ms. Dynamic requests were divided into
5 types from 4ms to 200ms. Each request had its soft dead-
line defined as the maximum of 50ms or 3 times its execu-
tion time. More details can be found in [10].

Power Management Servers can be at standby, idle or
active state. In standby state, only a small amount of power
is consumed to feed some internal circuits of the server. In
the idle state, a server consumes only static power, which
is the minimum power consumed when the server is able

2Long-lived applications are subject of future work, because they may
involve migration of existing applications from overloaded/overheated
servers.

to process requests. A server consumes additional power to
process each request. The amount of power consumed is
dependent on the type and size of the specific request pro-
cessed as well as the speed at which the server is operating.

It is well-known that dynamic voltage scaling (DVS) has
a large impact on the energy and power consumption of
the CPU. Figure 8 shows the impact of DVS on the CPU
power evaluated in this paper. Each line in the graph repre-
sents a single frequency/voltage operating point, and shows
the power consumption as a function of applied load. The
power is linear with load, but super-linear with speed (or
frequency/voltage). For example, the CPU is approximately
twice as efficient at 1GHz with full load, dissipating 17W,
than running at 2GHz with 50% max load, dissipating 32W.

Thermal Operation During normal operation, the tem-
perature of the AMD Athlon64 3000+ should not surpass
70°C [5]. One of the characteristics of the processor that
can be computed from our model is the maximum load that
can be given to the processor when the CPU fan fails.

Recall from Section 4 that the thermal resistance is in-
creased by a factor of 4.7 during a failure. During normal
operation at load 1.0, the temperature difference between
the CPU and the environment is approximately 23°C (see
Figure 5 for maximum temperature and ambient tempera-
ture is 25°C, respectively). Since the maximum CPU tem-
perature is 70°C, and the external temperature is 25°C, the
maximum difference of temperature is 45°C. Therefore, the
difference between normal operation and faulty operation
grows by a factor of 1.96.

A reduction of CPU power of a ratio 2.4x (4.7/1.96) is
sufficient, and thus, after a CPU fan fails, the maximum
power should be no more than 46W/2.4 = 19W (46W is the
maximum power dissipated from Figure 9). Load is then de-
termined using Figure 8 and searching for the highest load
in a curve below 19W. In this case 1.0GHz at max load of
0.5. DVS is important here because it allows a reduction
of power better than linear but with a smaller reduction in
performance. Because this processor has a very high static
power, DVS becomes more important since a reduction of
2.4 in CPU power would allow a load of only 0.09 at 2GHz
or 0.22 at 1.8GHz.

We implemented our thermal model in the simulator and
all the servers share the same parameters of the model. The
startup and shutdown processes were not simulated: the ini-
tial temperature of each server after the system boots is fixed
at the measured temperature in the real system as the stable
temperature at a idle state.
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Figure 8. CPU power measured for different fre-
quencies and supply voltages at maximum system
load: at 1GHz, can only process 50% of the load at
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6 Experiments

6.1 Experimental Results

We study the web farm energy and QoS behaviors in the
load range from 0.1 to 2.5, with and without the presence
of CPU fan failures as thermal faults. QoS is defined in
this paper as the percentage of deadlines met among all the
requests issued. We assume that all thermal faults occur
in server 0, so that the impact of the fault is isolated and
observed independently at all nodes. The load-balacing al-
gorithm is unaware of this choice, the only hard constraint
is that total load should be less than the sum of maximum
load allowed per servers at any point in time. Without this
constraint some requests would have been lost, since there
is not enough resources available to server them.

Figure 9 presents the total power consumed by all servers
and the maximum temperatures of the CPUs given a con-
stant load with and without a single thermal fault present.
When a fault is present, the server is assumed to have failed
prior to the start of the experiment. Each point is the average
of one hour of operation at the fixed load. The power graph
has an inclined staircase trend, with two steps. Each step
corresponds to a point where a new machine is turned-on.
The steps appear because servers have a significant static
power, 69W or around 50% of maximum consumed power
for a server, and this amount of power is consumed when
a machine is turned on and added to the farm. Note that at
the average load of 0.7, the increase in “total power” (with-
out faults) consumption is due to the second server being
turned on and off intermittently, because of statistical vari-
ations that sometimes causes the actual load to be above
0.84.

Figure 9 shows three pairs of temperature (follow right Y
axis) and power (left Y axis) curves for each experiment: (1)
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Figure 9. Total power consumed and maximum tem-
perature of all CPUs versus applied load

the operation without thermal failures (curves with circles);
(2) with thermal failures but no thermal-aware load balanc-
ing (curves with triangles); (3) and with thermal failures and
thermal-aware load balancing (curves with squares). The
power curves for case (1) and (2) are exactly the same since
the thermal-aware portion of the load-balancing mechanism
is not active during the experiment.

The temperatures measured in the cluster (see Figure 9)
increase with the load until a new machine is turned on,
at which point the load per machine is reduced since more
servers now are sharing the overall load. The temperature
then falls according to the load at each server. The impact of
a CPU fan failure is significant: the curves with failure show
20°C to 30°C higher CPU temperature. It is also clear that
turning on a new machine, as a result of thermal-aware load-
balancing, reduces the maximum temperature by 10°C in
the worst case and keeps the temperature consistently below
the maximum operating temperature of 70°C.

In Figure 10, we measured the temperatures while keep-
ing a constant load of 0.6 for the duration of the experi-
ments. At t = 600s, a CPU fan failure is detected and the
front-end is now aware that server 0 can not handle a load
of 0.6. Recall that the maximum load allowed with a bro-
ken CPU fan is 0.5 as discussed in Section 5. A new server,
server 1, becomes operational after its 20-second boot-up
time and starts sharing the load. Server 0 now carries a load
of 0.4 on average, which is now within its acceptable load,
and server 1 is carrying a load of 0.2. The imbalance of load
in this case appears as a side effect of the algorithm used in
the load distribution.

It is interesting to note that it took almost 1,400 sec-
onds for the CPU at server 0 to reach its final tempera-
ture, even though the heat produced at the CPU on average
was constant (fixed load). This slow increase in tempera-
ture is caused by the large thermal RC (i.e., capacitance and
resistance) of the heatsink. This large time constant and
the prompt reaction to the fault—taking only 20s to acti-
vate a new server—help keep the CPU temperature always
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Figure 10. Effect of CPU fan failure at T=600s over
time at fixed load of 0.6

in a safe zone. Although it has been observed that reduc-
ing boot time reduces energy consumption significantly, fast
boot times do not significantly affect the maximum temper-
ature of the server. QoS, on the other hand, will be affected
because the machine would operate anyway in a lower fre-
quency under DVS.

Each point of the load curve in Figure 10 represents the
instantaneous load measured at every 5 seconds. The large
variation in load over time is due to the long dynamic web
requests, which are responsible on average for 50% of CPU
consumption, even though they represent less than 2% of
all requests. This high variance can create a situation when
a server is overloaded but only for small moments of time
even when the average load is well within the sustainable
margins on this server. Note that the server is considered
overloaded when the peak load hits a 100% CPU utilization
at maximum frequency, even if the corresponding average
load is smaller. In the simulated case, the maximum load
is 1.0 (around 1,000 requests/s) but, since there is slack in
the schedule, the server would be able to sustain an instan-
taneous load of 1.1 (i.e., 1,100 requests/s for the 5 second
period measured).

We have performed a more realistic simulation by con-
sidering the traces of web requests of a 24h period from
jun/30 to jul/01 of the World Cup 98. The traces con-
tain only the number of requests per seconds, type and
size transmitted but no information of how much CPU time
each request consumes. Dynamic requests are responsible
of most of CPU consumption, because static requests are
usually cached in servers with large memories and internal
bandwidth. We reused the requests distributions from our
server, www.cs.pitt.edu, but scaled the requests ac-
cording to the number of requests of the trace. The trace
was also scaled so the maximum load was 2.5 (2,500 re-
quests/s).

Figure 11 shows the behavior of the server farm with and
without a thermal fault. A single CPU fan fault in server 0
was simulated as occurring at the beginning of the simula-
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Figure 11. Temperature, load and QoS (% of met
deadlines) for server 0 in simulated web trace

tion. The temperature graph shows that without any con-
trol in the presence of a thermal fault the CPU tempera-
ture would be much higher, even surpassing the maximum
allowed temperature of 70°C. Using a thermal-aware load-
balancing algorithm the temperatur is reduced and is always
within the acceptable limits.

The load graph of server 0 in Figure 11 shows that the
front-end limits the load given to the faulty server to 0.5
(as discussed above) and thus is able to limit the temper-
ature increase at the faulty server. The local DVS in each
server is then able to use only more efficient frequencies,
since the load is smaller, keeping the temperature at a lower
value. Dealing with the fault comes at a price: higher power
consumption, since more servers are active to cope with the
same load.

The QoS (shown in the bottom graph of Figure 11) is
not adversely affected and is even improved, because there
are more servers available most of the time to distribute the
load, reducing the maximum load to each individual server.



Again, this comes at the cost of higher power consumption.
We observed that the QoS of the entire cluster has a similar
behavior as the behavior shown for server 0.

7 Current Status and Future Work

In this paper, we presented a mathematical model ca-
pable of describing thermal characteristics of server farms.
The model can adequately represent thermal characteristics
of each component in the system under normal operations
as well as under the situations when failures occur in cool-
ing components such as the CPU fan and the case fan. Our
model is simple, accurate and easy to compute, opening
the possibility of testing thermal impacts of applications on
computer systems by fast simulations. This model makes
it possible to predict the system temperature at any (future)
time instant. Therefore, it allows mechanisms like load-
balancing and server switch-on/switch-off to be more dy-
namic, rather than merely reacting to the situation when the
temperature reach a critical point. Furthermore, the algo-
rithm is efficient enough to allow dynamic recomputation
of the temperature during runtime.

As a proof-of-concept, we presented a thermal-aware
energy-efficient load balancing algorithm that can maintain
the operational conditions of the system under cooling sys-
tem failures. The experimental results show that the algo-
rithm successfully avoided system overheating by distribut-
ing the load among the servers achieving fault isolation by
mitigating its impact.

In the near future, we plan to improve the model to in-
clude variable-speed fans and the effect of temperature over
power consumption in newer CPUs. Thermal-aware migra-
tion and load-balancing for grid applications are also un-
der investigation. We also plan to study how to do thermal
fault detection by comparing expected temperature profile
from the model and from actual measurements during run-
time. This early fault detection will let us design a mecha-
nism that can avoid unnecessary performance and reliabil-
ity degradations. Some faults are easily detectable, like fan
failures by measuring its rotation speed, but others are not,
like filter clogging.
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