
Near-Memory Caching for
Improved Energy Consumption

Nevine AbouGhazaleh, Student Member, IEEE, Bruce R. Childers, Member, IEEE,

Daniel Mossé, Member, IEEE, and Rami G. Melhem, Fellow, IEEE

Abstract—The main memory has become one of the largest contributors to overall energy consumption and offers many opportunities

for power/energy reduction. In this paper, we propose a power-aware cached-dynamic-RAM (PA-CDRAM) organization that integrates

a moderately sized cache directly into a memory chip. We use this near-memory cache to turn a memory bank off immediately after it is

accessed to reduce power consumption. We modify the operation and structure of CDRAM with the goal of reducing energy

consumption while retaining the performance advantage for which CDRAM was originally proposed. In this paper, we describe our

PA-CDRAM organization and show how to incorporate it into the Rambus memory. We evaluate the approach using a cycle-accurate

processor and memory simulator. Our results show that PA-CDRAM achieves up to 84 percent (28 percent on the average)

improvement in the energy-delay product and up to 76 percent (19 percent on the average) savings in energy when compared to a

time-out power management technique.

Index Terms—Memory design, power management, energy-aware systems, memory power management, cached DRAM.

Ç

1 INTRODUCTION

ENERGY consumption is a limiting constraint for both
embedded and high-performance systems. In em-

bedded systems, the lifetime of a device is limited by the
rate of energy dissipation from its battery. On the other
hand, energy consumption in high-performance systems
increases thermal dissipation, thus requiring more cooling
resources and accordingly increasing the system’s main-
tenance overhead. For the majority of these systems, the
memory subsystem consumes a large portion of the overall
energy dissipation (for example, memory consumes 41 per-
cent [1] and 23 percent [2] of the total system power in
servers and portable devices, respectively), which motivates
the need for efficient memory power management.

With the continuing advancement in the design and
manufacture of faster and more powerful computing
systems, more performance is demanded from the memory
system. For example, in current chip multiprocessing
(CMP) and simultaneous multithreading (SMT) processors,
concurrent applications or threads allow the CPU(s) to issue
more load and store requests in each cycle. Even with large
caches, this higher demand coupled with a slow memory
access time creates a potential performance bottleneck.

Memory has a huge internal bandwidth compared to its
external bus bandwidth. The internal memory bandwidth
can reach 1.1 Tbytes/s, whereas a fast external memory bus
is in the range of 10 Gbytes/s [3]. To exploit the wide
internal bus, cached dynamic RAM (CDRAM) adds a static

RAM (SRAM) cache to the DRAM array on the memory
chip [4]. Such a near-memory cache acts as an extra memory
hierarchy level whose fast latency improves the average
memory access time and potentially improves system
performance, provided that the near-memory cache is
appropriately configured. Moreover, in case of a cache
miss, transferring a cache block over an external bus
consumes four times more energy than transferring the
same data over an internal bus (that is, it does not cross a
chip boundary). This reduction is due to the smaller
capacitance of internal buses (0.5 pF) compared to external
buses (20 pF) [5].

In this paper, we explore the energy saving obtained by
placing SRAM caches closer to the memory, rather than closer
to the CPU. We integrate a moderately sized cache within the
chip boundary of a power-aware multibanked memory. We
call this organization power-aware CDRAM (PA-CDRAM). In
addition to improving performance, PA-CDRAM signifi-
cantly reduces energy consumption in caches and in the main
memory. Cache energy is reduced because 1) using small
caches distributed to the memory chips reduces the cache
access energy compared to using a large nondistributed cache
and 2) near-memory caches allow the access of relatively
large blocks from memory, which is not affordable with near-
processor caches. Memory energy consumption is reduced by
having a longer memory idle period during which DRAM
banks can be powered off. PA-CDRAM improves the original
CDRAM by tackling the interplay of the cache and memory
organizations to optimize the memory’s performance and
energy consumption.

The innovation of this work is the use of near-memory
caches to further reduce the memory’s energy consumption
beyond the savings achieved from traditional DRAM
dynamic power management. CDRAM was proposed to
improve performance; however, it may hurt energy con-
sumption (as demonstrated in Section 3). Combining

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007 1441

. The authors are with the Department of Computer Science, Sennott Square,
University of Pittsburgh, Pittsburgh, PA 15260.
E-mail: {nevine, childers, mosse, melhem}@cs.pitt.edu.

Manuscript received 22 Dec. 2005; revised 7 Oct. 2006; accepted 21 Feb. 2007;
published online 6 June 2007.
Recommended for acceptance by M. Dubois.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0459-1205.
Digital Object Identifier no. 10.1109/TC.2007.70740.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

CDRAM and DRAM power management would potentially
benefit from the performance gains and save energy in
memory.

The contribution of this paper is threefold. First, we
propose near-memory caches for energy reduction in the
memory hierarchy. This reduction comes without affecting
the performance gain provided by CDRAM. Second, we
describe an implementation of PA-CDRAM that integrates a
near-memory cache in a Rambus chip (RDRAM). This
description includes the changes made to an RDRAM chip,
the near-memory cache controller, and the communication
protocol. We also describe how our implementation can
maintain backward compatibility with existing Rambus
memories. Finally, the paper experimentally evaluates
PA-CDRAM and shows that PA-CDRAM is more energy
efficient than a traditional Rambus memory hierarchy
employing a time-out power management policy.

2 BACKGROUND

As background for the paper, this section describes the
technologies and techniques that serve as the basis for
PA-CDRAM.

Embedded DRAM (eDRAM). Integrating DRAM and logic
cells on the same chip is an attractive solution to achieving
both high performance (from logic cells) and high memory
density (from DRAM cells). This integration avoids the high
latency of going off chip by doing computation (or even
caching) at the memory itself. Currently, manufactured
chips with eDRAM and logic are mainly used in applica-
tions like computer graphics, networking, and handheld
devices [6]. Based on the fabrication technology (either
DRAM-based or logic-based), some degradation to the
speed (density) of the logic (DRAM) cells may occur. For
example, in early DRAM-based chips, logic cells were
reportedly slower by 20 to 35 percent [6]. However,
emerging fabrication technologies aim to overcome these
penalties. For example, NEC’s eDRAM chips offer DRAM-
like density with SRAM-like performance [7] and IBM’s
third-generation eDRAM chips support two eDRAM
families for high density and high performance to serve
both purposes with no degradation [8].

CDRAM. To decrease the average memory access time,
Hsu and Smith [4] proposed integrating a small SRAM cache
within the memory chip next to the DRAM core, as shown in
Fig. 1. Due to high internal bandwidth, large chunks of data
can be transferred between the DRAM core and the near-
memory cache with low latency. The average memory access

time is improved by accessing the data through the fast near-
memory cache rather than the slower DRAM. CDRAM chips
were first manufactured by Mitsubishi [9] and are typically
implemented using synchronous DRAM (SDRAM). Each
memory bank has its own cache.

Hsu and Smith evaluated the performance of CDRAM in
vector supercomputers. They showed an improvement in
cycles per instruction (CPI) compared to the traditional
memory without this extra cache. To improve the CDRAM
performance, Koganti and Kedem [10] proposed a CDRAM
with a wide cache line ranging from 4 to 8 Kbytes interleaved
across multiple DRAM banks. Although the SRAM cache’s
miss rate is reduced, the authors did not account for the extra
delay and energy spent accessing these large cache block
sizes, which may degrade the performance and increase the
memory’s energy consumption. Hegde et al. [11] proposed
using variable-width cache lines that fit the application access
pattern to save the energy consumed by unnecessary traffic
between the DRAM core and the near-memory cache. Zhang
et al. [12] showed that CDRAM is able to improve
performance as the instruction-level parallelism (ILP) degree
increases. Past work did not explore the energy savings that
can be achieved over a currently available alternative, such as
power-aware memory, with the same overall system cache
and memory capacity.

Rambus technology. Rambus [13] is a family of DRAM
architectures that provide a high memory bandwidth. A
Rambus chip, RDRAM, can be set in one of four power states.
The states, in descending order of power consumption, are
active, standby, nap, and powerdown. RDRAM chips can
dynamically transition between power states to reduce
energy consumption. Accessing data requires the chip to be
in the active state. The lower the power state of a bank, the
longer the synchronization delay needed to switch to the
active state to service a request. RDRAM is connected using a
memory bus, Rambus Channel (or, simply, a “channel”). A
channel consists of four buses: a row bus, a column bus, a data
bus, and a control register bus. Commands from the Rambus
memory controller (MC) are sent through the channel as
packets to be decoded by the control logic in the RDRAM.

Power-aware memories. Outside the context of CDRAM,
Lebeck et al. [14] proposed the use of a power-aware
allocation policy where data is allocated sequentially in each
bank to increase bank idle periods. An implementation of the
memory power manager in the Linux operating system [15]
allocates memory pages to banks based on the running
applications. Delaluz and Irwin suggested using compiler
techniques to group the requested pages in memory based on
the application’s order of data accesses [16].

3 PA-CDRAM

CDRAM was originally proposed to improve system
performance; however, it was not designed as a replace-
ment to power-aware memory. Fig. 2 shows the average
performance and energy consumption of CDRAM versus a
traditional memory hierarchy for the same near-memory
cache configuration used by Hegde et al. [11].1 Each

1442 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 1. Functional block diagram of a CDRAM.

1. Data produced when running the SPEC2000 benchmarks on
SimpleScalar.

CDRAM chip has a fully associative 4-Kbyte cache. We
show the results for different cache block sizes (256, 512,
and 1,024 bytes) for the embedded SRAM cache. Although
CDRAM has a good performance improvement over the
traditional memory, the memory’s total energy suffers
dramatically, with an increase of 1.5 to 3 times. This
increase is due to the extra energy consumed from accessing
the near-memory caches and transferring more data from
the DRAM core at large block sizes.

The energy penalty of CDRAM can be overcome by
decreasing the miss rate of the near-memory cache and
using power management for the DRAM core. As we will
show, making the CDRAM power aware not only decreases
the energy penalty of CDRAM but also significantly
improves overall memory energy in comparison to a
traditional power-aware memory hierarchy.

Because DRAM power management typically relies on
idleness to select power states, an improved miss rate in the
near-memory cache increases the amount of idleness in the
DRAM core, leading to more effective power management.
One way to improve the miss rate is to increase the capacity
of the near-memory cache. However, the total energy of the
whole memory hierarchy is increased due to a greater
overall cache capacity. Instead, we propose reallocating the
existing cache capacity from the memory hierarchy’s lowest
cache level to the near-memory cache. For example, it may
be possible to allocate the capacity of the L3 cache to
CDRAM’s near-memory cache. The L3 cache could then be
eliminated, possibly without harming application perfor-
mance. Moving the cache capacity to the near-memory
cache has three advantages. First, the near-memory caches
are distributed among the memory chips, which leads to
lower energy consumption because the individual caches
are smaller than one monolithic cache. Second, large data
transfers are possible from the DRAM core to the near-
memory cache (that is, there is more memory bandwidth,
which makes large block sizes feasible). Finally, the near-
memory caches can filter and avoid accesses to the DRAM
core. Since near-memory caches can achieve lower miss
rates than near-processor caches, such filtering increases
idleness and lets the DRAM core stay in a low-power state
for longer periods of time.

To build a PA-CDRAM, there are two main challenges
that must be addressed: 1) how to configure the DRAM
core’s power management, assuming the use of multiple
power states, and 2) what the best configuration for the
near-memory cache to balance energy and performance is.
We describe each of these challenges and our way of
addressing them below.

3.1 DRAM-Core Power Management

With a near-memory cache, we propose applying aggres-
sive power management in the DRAM core. During a chip’s
idle time, the MC can immediately transition the DRAM
core to the idle state after servicing all outstanding requests.
This is equivalent to the use of a time-out policy with an
idle threshold of 0 sec. Although a zero-threshold policy
increases the total inactive time, it can degrade performance
and increase the total energy consumption when too many
requests are directed to a memory chip. The extra delay and
energy overheads are due to the transitional cost between
power states.

In PA-CDRAM, we avoid this problem by choosing the
near-memory cache configuration in a way that increases
the hit rate while reducing the DRAM core’s energy
consumption.2 When most data requests are serviced as
cache hits in the near-memory cache, the longer interarrival
time between requests that reach the DRAM core make it
cost-effective to immediately deactivate banks after servi-
cing outstanding requests.

We choose to keep the near-memory cache active all the
time to avoid delays that may be caused by on-demand
activation of the cache at each request.

3.2 DRAM Core versus Near-Memory Cache Energy
Trade-Off

To reduce the memory’s energy consumption, we need to
consider the effect of the near-memory cache configuration
on the energy consumption of both the near-memory cache
and the DRAM core. The two factors that affect the cache
energy consumption and access latency—for a given cache
size and fixed number of cache subbanks—are the
associativity and the block size [17].

The cache associativity directly affects the miss rate.
Increasing associativity reduces the cache miss rate and vice
versa. One goal of PA-CDRAM is to keep the near-memory
cache miss rate as low as possible because it directly
influences memory energy consumption in two ways. First,
the higher the miss rate, the more activity in the DRAM in
terms of transitioning from the idle to the active state,
performing address decoding, and transferring data.
Second, the lower the miss rate, the longer the DRAM-core
idle time. To keep the miss rate at a minimum, we use fully
associative caches to eliminate any conflict misses. We
argue that, in most cases, performance improvement and
energy saving from reducing near-memory miss rates
(given the appropriate cache configuration) can outweigh
extra delay and energy consumed in accessing higher
associative caches [18].

Reducing the miss rate only is not sufficient to reduce the
memory’s energy consumption and application’s overall
delay. Thus, in PA-CDRAM, we account for the effect of the
cache configuration on the overall memory’s energy (in
contrast to that of Koganti and Kedem). After selecting the
cache associativity, choosing a near-memory cache block
size creates a trade-off between the near-memory cache and
DRAM-core energy consumption. Small cache blocks have

ABOUGHAZALEH ET AL.: NEAR-MEMORY CACHING FOR IMPROVED ENERGY CONSUMPTION 1443

2. Different configurations for the L3 cache would not have the same
effect: Near-memory caches have a much wider bandwidth to memory than
L3 caches.

Fig. 2. Average performance and energy consumption for different near-

memory cache block sizes.

the advantage of fast hit time and low energy per access.

However, smaller blocks imply frequent accesses, conse-

quently increasing the DRAM-core energy due to the

increased activity. The increase in the DRAM-core energy

rises as a result of increasing the memory activity (such as

power-state transitions, address decoding, and data trans-

fer). Conversely, larger near-memory cache block sizes

reduce the DRAM activity but increase the near-memory

cache energy consumption and latency due to accessing

these large blocks.
This trade-off is illustrated in Fig. 3. The figure shows the

energy consumption in the near-memory cache and DRAM

core at different cache block sizes. Energy values are

obtained using a simplified energy model. The model

estimates the near-memory cache energy consumption,

Ecache, and that of the DRAM core, EDcore, as a function of

the number of near-memory cache and DRAM-core

accesses. From this model, given the number of cache

accesses and the approximate execution time for an

application, we can roughly estimate the memory energy

consumption at different block sizes. We use SimpleScalar

[19] to estimate the input parameters (the number of cache

accesses and execution time).
In Fig. 3, we show estimated energy for two of the

SPEC2000 benchmarks, bzip and mcf, as an example of CPU

and memory-intensive applications, respectively. In bzip,

the DRAM-core idle energy dominates the PA-CDRAM

energy, whereas, in mcf, the frequent accesses to the near-

memory caches makes the cache energy dominate the total

energy at large block sizes. From the figure, we see that the

trade-off between the near-memory cache and DRAM-core

energy consumption creates a sweet spot between block

sizes 256 and 512 bytes. Note that finding ideal block size is

application dependent. However, from our simulation, in

most of the applications, the minimum energy-delay

product can be achieved at or within a slight margin of

one of these two block sizes [20].
From this section, we conclude that, for the given cache

size, the near-memory cache should be fully associative (to

reduce the miss rate) and have a block size of either 256 or

512 bytes (to balance the memory’s energy and delay). For the

DRAM core, setting the chip to the idle state after servicing

outstanding requests (that is, timeout ¼ 0) is expected to save

the memory energy consumption. The implementation

described in the next section uses such a configuration.

4 PA-CDRAM IMPLEMENTATION

In this section, we describe the architectural and operational
modifications needed to integrate a near-memory cache in
RDRAM. First, we describe the organizational issues of
integrating a near-memory cache in the memory chip. Next,
we discuss the design of the controller for the near-memory
cache because it has energy, performance, and backward-
compatibility implications. Finally, we describe the opera-
tion of the controller, including some changes needed to the
Rambus bus protocol.

4.1 PA-CDRAM Architecture

Our PA-CDRAM design modifies the original RDRAM
design for power efficiency. Besides the addition of the
near-memory cache, some alterations are needed in the
main components of the RDRAM, namely, the DRAM core,
the control logic, and the memory and cache controllers (in
Section 4.2).

Near-memory cache. We add a fully associative cache
(depicted as dark blocks in Fig. 4), with its data array
divided into two sections. Since the original RDRAM design
has a divided data bus, each section of the cache is
connected to one of two internal data buses (DQA and
DQB). Each cache section stores half of each cache block.
We keep the original RDRAM write buffers before the sense
amplifiers. The write buffers are used to store replaced dirty
blocks from the near-memory cache to be written to the
DRAM core. The power state of this cache is independent of
the power state of the other chip components. In the nap
state, the RDRAM internal clock is periodically synchro-
nized with the external clock [13]. Thus, the near-memory
cache is accessible even when the DRAM is in the nap state.

DRAM core. To accommodate the large transfer sizes
between the DRAM core and the near-memory cache, wider
internal data buses are required to connect the sense
amplifiers with the near-memory cache. The width of each
bus connecting the DRAM and near-memory caches is
b=2 bits, where b is the size of a cache block. The buses DQA
and DQB remain at an 8-bit width.

Control logic. Extra cache row and column decoders are
added in the chip’s control logic for decoding cache
addresses. In addition, the existing RDRAM packet decoder
in each chip is modified to decode new cache commands.

1444 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 3. The effect of different cache block sizes on the memory energy

consumption for (left) bzip and (right) mcf.

Fig. 4. Functional block diagram of a PA-CDRAM.

The new cache commands indicate whether the access is a
hit/miss in the cache and whether replacement is needed.
The new commands and their fields are defined in
Section 4.3.

4.2 Near-Memory Cache Controller

In the design of PA-CDRAM, a controller is needed to
handle hits and misses in the near-memory cache. An
important design question is where this controller should
be placed. One alternative is to have a single near-memory
cache controller (called a centralized controller) that is
integrated into the main Rambus MC. Another alternative
is to have a near-memory cache controller per Rambus chip
(called a distributed controller), with that controller inte-
grated into the Rambus chip itself.

In the centralized-controller case, there is a tag array for
each memory chip. The centralized controller keeps track of
the control data for each block, such as a valid bit, a dirty
bit, and LRU counters. This way, the cache controller is able
to locally decide on replacement policies and update the tag
arrays. The centralized controller communicates with cache
data arrays by sending cache commands through the
channel (as described in Section 4.3). In the distributed
controller case, the cache controller is integrated more
tightly with the near-memory cache (they are on the same
chip). This design provides backward compatibility with
current Rambus MC chips, as well as flexibility of
connecting PA-CDRAM and RDRAM chips in the same
channel. In the distributed design, each controller has its
own tag array and the same functionality as the centralized
controller. The distributed design has to intercept the
control packets received from the MC through the channel
and issue consequent command sequences to either the
near-memory cache or the DRAM core.

The centralized controller has the advantage of perform-
ing a relatively faster tag comparison because it is imple-
mented in the same technology as the MC. Thus, the
centralized controller has a faster average memory access
time compared to the distributed design, where the controller
runs at a slower speed (due to the mixed use of logic and
DRAM). For example, a delay penalty of 25 percent for logic
cells with the distributed design has a 25 percent slower cache
hit time versus a roughly 16 percent penalty with a
centralized controller design.3 On the other hand, the bus

activity (and, hence, the energy) in the Rambus channel is
reduced by using a distributed design since only memory
control packets are sent across the Rambus channel,
whereas, in the centralized design, cache and memory
control packets have to be sent across the channel. Hence,
the distributed design has less bus energy but suffers a
performance penalty relative to the centralized design. In
our evaluation (in Section 6), we examine the trade-off
between these two alternatives.

Next, we describe PA-CDRAM’s operation. The differ-
ence between the centralized and distributed controllers is
that, in the former, we need extensions to the Rambus
protocol. The protocol extension is required because the
cache controller resides in the MC and therefore needs to
command the near-memory cache from afar, necessitating a
new protocol.

4.3 PA-CDRAM Operation

In the PA-CDRAM distributed-cache-controller design,
after receiving the data request on the Rambus channel,
the cache controller performs the tag comparison and reads
data from the near-memory cache if the tags match.
Otherwise, the cache controller internally sends a sequence
of control signals to activate a DRAM bank, read data, and
precharge the data line according to the DRAM-core timing
constraints.

For PA-CDRAM with a centralized cache controller, we
need to extend the Rambus communication protocol
between the memory/cache controllers and the memory
chips. This extension is needed because the cache controller
resides within the MC chip; thus, it needs to drive the
caches (invalidate lines, evict lines, and so forth) in the
PA-CDRAM chips through the Rambus channel. For that,
we define three new commands to communicate with the
near-memory caches, as shown in Table 1.

To perform a data read/write request from the memory, a
sequence of commands is issued along the Rambus channel.
A read (write) can result in either a near-memory cache hit
or a miss. Fig. 5 illustrates the sequence of commands and
data on the row, column, and data buses (timing diagrams)
in the channel for a read hit and read miss. The
communication protocol for command packets for a write

hit/miss is similar to the read hit/miss, respectively, with
the substitution of CRA by CWA command and the
direction of data. The figure also shows the timing

ABOUGHAZALEH ET AL.: NEAR-MEMORY CACHING FOR IMPROVED ENERGY CONSUMPTION 1445

3. According to Cacti, tag comparison takes around 35 percent of
the total cache hit time for the selected configuration. That is,
xþ ð1� :35Þx � :25 ¼ 1:16x.

TABLE 1
PA-CDRAM Cache Commands Sent across the Control Bus

constraints imposed by the Rambus protocol on the earliest
time to send subsequent packets to the same chip.

For each request, the MC identifies which chip the
requested data resides in and then lets the cache controller
search the tag array corresponding to this target chip.
During the tag comparison, the cache controller sends the
requested block address through the channel using the CRA
command. After the comparison, the cache controller sends
the comparison result using the CTT packet. In the case of a
near-memory cache hit (tag_flag is set), data is read directly
from the near-memory cache. In case of a near-memory
cache miss, the cache controller uses the CTT packet to send
the address of the block to be replaced and whether or not it
is dirty. If the block is dirty (that is, dirty_flag is set), then it
is written to the write buffer. Meanwhile, the MC sends a
packet to activate the chip (ACT), followed by a read
command for a memory address (RD), and then an optional
command to precharge the data line (PRER). The memory
command sequence RD-ACT-PRER is part of the original
Rambus protocol. After the data is read from the memory
address, it is copied to the near-memory cache through the
sense amplifiers. The cache controller then sends another
command sequence requesting the new block, which is
treated as a cache hit.

If there are no outstanding requests to a chip, then the
RDRAM chip does an automatic copy of the write buffers to
the correct banks during the chip idle periods. After writing
the contents of the write buffers, the MC issues a command
to send the chip to nap. Note that the cache commands use
both the row and column control buses. This is to increase
the memory pipelining and decrease the delays for memory
access (even if it is near-memory cache accesses).

5 ENERGY AND DELAY MODELING OF PA-CDRAM

In this section, we develop a simple analytical energy model
to highlight the main factors that affect PA-CDRAM energy
savings compared to the traditional memory. The memory
hierarchy consists of L1, L2, L3, or near-memory caches,
and the DRAM core. PA-CDRAM uses the same cache
capacity as in the traditional memory; however, the
capacity of the L3 cache is distributed on near-memory

caches. Our model is based on system parameters (such as
caches’ access energy and latency, as well as the time and
power consumed by DRAM in each power state) and
application parameters (such as the number of L2, L3, and
near-memory cache misses).

The model accounts for energy consumed in the caches
ðEcacheÞ, the DRAM-core ðEDcoreÞ, and system buses ðEbusÞ.
We do not account for the cache leakage energy (propor-
tional to the size of the SRAM) as we compare our results
against a base case with equal cache capacity and we
assume it to be negligible:

Ecache ¼Ec accs �#c accs;
EDcore ¼Ed accs �#d accsþ Etrans �#transþ Pidle � Tidle;
Ebus ¼Eb accs �#b accs;

where #c accs, #d accs, and #b accs are the number of L3
(or near-memory) cache accesses, DRAM-core accesses, and
bus transactions, respectively. The cache energy per access,
Ec accs, is obtained from the Cacti tool [17] for both the L3
and near-memory caches, whereas the DRAM core’s energy
per access ðEd accsÞ, the power state transition energy
ðEtransÞ, and the idle power ðPidleÞ are specifications of the
particular RDRAM memory chip used [13]. Tidle is the time
spent in the DRAM idle state. To simplify the memory’s
energy estimation, we assume an application with a limited
number of write-backs and capacity misses in the L3 or
near-memory caches. We also assume a memory power
management technique that immediately deactivates the
DRAM-core after each access. In other words, the number
of memory power state transitions is double the number of
DRAM accesses: #trans ¼ 2 �#d accs. We derive the
number of cache and DRAM-core accesses as follows:

#c accsB ¼#c accsPA ¼ #L2 misses;

#d accsB ¼#L3 misses ¼ #c accsB � L3 miss rate;

#d accsPA ¼ � �#c accsPA � L3 miss rate;

where the superscript indicates whether the metric repre-
sents PA-CDRAM ðPAÞ or the traditional memory (called
B, the base case). � ¼ #d accsPA

#d accsB
¼ near�memory miss rate

L3 miss rate repre-
sents the improvement in the near-memory average miss

1446 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 5. Timing diagram of the Rambus channel for near-memory cache read hit (upper) and read miss (lower) transactions.

rate with respect to the traditional L3. � is affected by the

spatial and temporal locality of the application’s data and

can be estimated using cache models that predict cache miss

rates [21].
To compute the amount of energy spent in the DRAM

core, we estimate the time spent at each of the DRAM active

and idle power states. We compute Tidle in terms of the

execution time of an application ðTexecÞ and the time spent

in the DRAM active state ðTactiveÞ, as shown in the equations

below. Td accs is the average DRAM access time. Texec is

derived from the execution time of an application with an

access latency equal to zero for data accesses beyond L2

ðTperfectÞ4 and the average access time of the combined

DRAM and L3 (or near-memory) cache ðTmem accsÞ:

Tidle ¼Texec � Tactive;
Tactive ¼Td accs �#d accs;
Texec ¼Tperfect þ � ðTmem accs �#d accessÞ:

� is the fraction of memory access time that does not

overlap with the processor’s computation (resulting in CPU

stalls). � is affected by the processor’s design (for example,

issue width, depth of Load/Store queue) and its effect on

hiding memory latency. Both � and � are application

dependent and their values range from 0 to 1 under the

above assumptions. � can exceed one in case of high-

capacity misses and large write-back traffic.
Fig. 6 shows the effect of varying the number of

L2 misses, � and � on the energy-delay product. PA-

CDRAM memory consists of a 256 Kbyte near-memory

cache with 512 byte blocks versus a 2 Mbyte L3 cache with

128 byte blocks in the base case.5 The results shown are for a

duration of Tperfect = 250 ms and fixed L3 miss rates:

20 percent and 5 percent as examples for moderately high

and moderately low miss rates. The graphs show that

varying � highly affects the savings in the energy-delay

product in PA-CDRAM compared to the traditional

memory. This is due to the fewer accesses to the DRAM

core and consequent idle time in memory. On the other

hand, � has less visible impact on the energy-delay product

primarily because the majority of the L2 misses can be

serviced by either the L3 or the near-memory caches, which

have similar cache access latency. For smaller L3 miss rates,

the PA-CDRAM energy-delay saving is smaller due to the
lower memory traffic.

Thus, given the application’s L2 misses, cache and
memory power, and delay characteristics, and estimation of
the L3 and the near-memory miss rates, we can estimate
whether using PA-CDRAM is more efficient than using the
traditional memory hierarchy under the above assumptions.

The intention of the above model is to highlight the
runtime factors affecting PA-CDRAM energy and delay
with respect to traditional memories. Other static factors,
such as per-access cache and DRAM energy and latency
(considered as fixed parameters in the above model), play a
role in evaluating the effectiveness of PA-CDRAM. Next,
we present a detailed analysis of the two memory models
using simulations and discuss the effect of the different
system parameters on the energy and delay of PA-CDRAM.

6 EVALUATION OF PA-CDRAM

In this section, we describe several experiments that explore
the energy and performance of PA-CDRAM. We evaluate the
different PA-CDRAM configurations and their impact on
energy and performance. Then, we analyze the performance
and energy benefits of PA-CDRAM compared to the
conventional power management employed by Rambus.
We also evaluate the energy and performance implications of
the centralized and distributed near-memory cache controller
designs and how well PA-CDRAM works in a multitasking
environment, where Rambus memories are most likely to be
used. Finally, we present a sensitivity analysis of PA-CDRAM
with respect to varying the different system parameters. We
begin with a discussion of our experimental methodology.

6.1 Methodology

To evaluate PA-CDRAM, experiments are performed using
the SimpleScalar architecture simulator [19] combined with
a memory module [22] that models a set of RDRAM chips
connected to a single Rambus channel. The memory model
also simulates the MC and its request scheduling. We
extended the memory model by implementing the CDRAM
memory structure and RDRAM’s power management
scheme with multiple power levels and a time-out policy
for power mode transitions.6 Simulations are performed
using a set of applications from the SPEC2000 benchmark

ABOUGHAZALEH ET AL.: NEAR-MEMORY CACHING FOR IMPROVED ENERGY CONSUMPTION 1447

Fig. 6. The effects of varying � and � on the energy-delay product.

4. Tperfect is the execution time when using perfect memory and L3 (or
near-memory) caches.

5. The cache hierarchies used are the same as in Section 6.

6. We limit our approach to using the nap state as the only low-power
state because the results in [14] and [15] showed that the nap state is energy
efficient and has relatively low transition delay.

suite. To avoid the cold-start effect, we fast-forward the
simulation two billion instructions and simulate the
following 200 million instructions as in [23].

Our study evaluates the energy consumption and delay
of PA-CDRAM against a base case that employs traditional
power-saving policies implemented by Rambus. Since we
are concerned with the memory subsystem, we measure the
energy-delay product considering memory energy and
overall delay. This metric would improve if we account
for the CPU energy. Since we do not apply any processor
power management and PA-CDRAM reduces the execution
time (as will be shown in Section 6.3), PA-CDRAM reduces
the processor static energy by reducing the application’s
runtime. However, we only include memory energy in our
results to be conservative.

Fig. 7 illustrates the memory models evaluated in our
experiments. Table 2 summarizes the system configurations
used in the two memory models. The base case is illustrated
using a specific cache hierarchy configuration similar to the
Pentium 4 Extreme Edition (EE) processor [24]. Latency
values are given in terms of CPU cycles. Note that this is a
more modern cache hierarchy setting that is different than
the one used in Fig. 2. In the base case, data allocation is
done linearly to keep the least number of chips in the active
state [14], [15]. In PA-CDRAM, we use interleaved memory
mapping to make use of all near-memory caches and use
the same L1 and L2 configurations as the base case. DRAM
power management in the base case uses a time-out policy
for the deactivation of the RDRAM chips to the nap state.

We compute the energy consumption in the DRAM core,
caches, and buses. During DRAM-core accesses, dynamic
energy is consumed which is proportional to the number of
DRAM accesses. Otherwise, the DRAM core consumes static
energy that is proportional to the time spent in each power
state. The timing and power characteristics of the simulated
RDRAM chip are for a typical RDRAM chip, namely, the
256 Mbits/1,066 MHz/32 split bank architecture [13].

Access energy and latency for each cache configuration is
obtained using Cacti 3.0 for 130 nm (the same manufactur-
ing technology as the Pentium EE). In Cacti, the per-access
energy and latency is divided into portions consumed in tag
array and data array (including sense amplifiers and output
latches). In n-way set associative caches, tag and data arrays
are accessed concurrently to reduce the total access time. In
fully associative caches, a tag array is replaced by a fully
associative decoder, after which the data array is accessed.
Tag comparison takes place in the decoder. Then, the

decoder drives the wordline associated with the cache
entry. This optimization reduces cache per-access energy;
however, it increases per-access latency. We obtain access
latencies and energy when operating at cache voltage
Vdd ¼ 1:3 V. As discussed in Section 2, we add a conserva-
tive delay penalty of 35 percent for accessing logic cells in
the memory chip [6]. We also add four cycles of delay
penalty for accessing off-chip caches.

We refer to a bus (address and data) by the two memory
elements that the bus connects; for example, L2$ L3 is the
bus connecting L2 and L3 caches. In our evaluation, we
account for L2$ L3, L3$ MC, and the Rambus channel in
the base case and account for L2$ MC, the Rambus
channel, and near-memory$ DRAM in PA-CDRAM, as
shown in Fig. 7. The energy of external and internal buses is
computed using the model presented in [5] and [25]. Unless
stated otherwise, we evaluate a centralized-cache-controller
design. The PA-CDRAM and base-case energy models are
detailed in [26].

We set our experiments using memory/cache configura-
tions that exhibited the best energy-delay product results
across all applications. From experiments with different
time-out values (0, 100, 500, 1,000, 5,000, and 10,000 cycles),
we found that a time-out of 1,000 cycles is the best fixed
threshold for the base case, whereas a zero time-out
threshold achieved the lowest energy-delay product on
the average for the PA-CDRAM. Experimenting with the
cache block sizes (128, 256, 512, and 1,024 bytes) and
associativity (eight-way set and fully associative), the least
energy-delay product for the L3 cache in the base case was
realizable using a cache with an eight-way set with 128-byte
blocks. The best configuration for the PA-CDRAM was fully
associative with 512-byte blocks. Further details can be
found in [20]. We omit these results due to space
limitations.

6.2 Energy and Delay

Across all SPEC2000 benchmarks, the average savings in
energy-delay product is 28 percent and up to 84 percent,
as shown in the last column in Fig. 8. This is an
aggregate behavior; to analyze the benefits of PA-CDRAM
on energy and performance independently, we decom-
pose the energy-delay product into execution time and
energy consumption. Fig. 8 shows these metrics for each
application normalized to the base case.

6.2.1 Effect on Delay

For most applications, there is no significant improvement
in the delay over the base case for two reasons. First, in
most of the applications, L2 can service a large number of

1448 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 7. Memory organizations of (a) the base case and (b) the proposed

PA-CDRAM.

TABLE 2
System Configuration

the memory requests. Second, most of the CPU stalls
resulting from L3 misses can be masked by the execution of
other independent instructions in the pipeline, that is, � is
very small. Three exceptions in Fig. 8 are ammp, art, and mcf.
For these benchmarks, the total number of DRAM-core
accesses is two orders of magnitude larger than the other
applications. With so many memory accesses, a reduction in
the average memory access time significantly improved
performance. This shows that near-memory caching is well
suited for memory intensive applications.

Compared to the motivational example presented in
Section 3, there is a difference in performance improvement.
This difference is due to the use of a different cache
hierarchy in each experiment. In Fig. 2, we use the same
cache hierarchy used in [11], which proposes a different
cache configuration. Additionally, the results in Fig. 2 use
an extra cache level in memory chips for CDRAM (resulting
in a larger overall cache capacity than the base case). The
extra cache capacity improves execution times. However,
for a more fair comparison, we use the same overall
capacity in both memory models and a more modern cache
hierarchy that includes the L2 cache. Hence, the overall
execution time becomes less sensitive to the memory
latency, which is a desirable effect in system design.

6.2.2 Effect on Energy Consumption

In Fig. 8, we also see that savings in energy consumption alone
reached up to 76 percent (for ammp). All applications exhibit
energy savings except for art and twolf. To analyze these
savings (and higher consumption in art and twolf), we further
decompose the energy consumption to show where the
energy is spent in each of the memory’s individual

components. Fig. 9 shows the relative consumption of the
DRAM-core dynamic energy (DRAM-dynamic), DRAM-core
static energy (DRAM-static), cache access energy (cache-
dynamic), and bus energy. The bottom of Fig. 9 shows the
cache miss rates for L3 in the base case and the average miss
rate of all near-memory caches in PA-CDRAM. Note that the
miss rates in PA-CDRAM are lower than those in the base
case in all applications. Thus, there exist fewer accesses to
the DRAM core in the case of PA-CDRAM. In the figure, �
ranges from 0.25 to 0.5 (except in ammp ¼ 0:002), which
indicates a potential for energy saving as discussed earlier.

DRAM-core energy. In all applications, the DRAM-static
energy was reduced due to the increase in the duration of
DRAM idle periods versus active periods in the base case.
With respect to the DRAM-dynamic energy, some applica-
tions, namely, ammp, bzip, gcc, gzip, mesa, twolf, and vpr,
have lower energy due to lower miss rates in the near-
memory cache that filter some of the accesses to the DRAM
core. All of the above applications have relatively small �
(around 0.26). Note the effect of the extremely low value of
� on reducing the energy-delay product of ammp. However,
applications like art, equake, mcf, parser, and vortex suffer an
increase in DRAM dynamic energy, even though near-
memory cache miss rates were reduced (� values around
0.42). This increase is due to the relatively large near-
memory cache block size that caused these applications to
access unnecessary data from the DRAM core.7 During
these excessively large transfers, the DRAM consumes extra
energy by reading/writing data that is never used by the
application. We deduce that increasing the spatial locality

ABOUGHAZALEH ET AL.: NEAR-MEMORY CACHING FOR IMPROVED ENERGY CONSUMPTION 1449

Fig. 9. PA-CDRAM and base-case energy breakdown and cache miss rates.

7. This factor was not considered in the model in Section 5 for simplicity.

Fig. 8. PA-CDRAM energy-delay breakdown.

for an application saves further energy in PA-CDRAM
dynamic energy compared to the base case and vice versa.

Cache energy. As cache access energy is proportional to
the length of activated bitlines and wordlines at each access,
dividing the cache into smaller near-memory caches reduces
energy. Table 3 lists the breakdown of per-access energy and
delay for both L3 and near-memory caches as obtained from
Cacti. For near-memory caches, the tag decoder latency and
energy are included in the data-array side. Near-memory
access latency in the table excludes the 35 percent slowdown
penalty. The figure shows that, when using PA-CDRAM,
there is a decrease in cache energy across all applications,
even with small reduction in miss rates.

Bus energy. The total energy of a bus depends on its
capacitance and activity. PA-CDRAM can reduce bus energy
consumption (as in ammp, art, equake, mcf, and mesa) by
reducing the total bus capacitances compared to the base case
(three external buses versus two external and one internal
bus for PA-CDRAM). However, in the other applications, bus
energy increases due to the increased Rambus channel
activity. Thus, applications with high L2 misses and low
L3 misses consume more bus energy in PA-CDRAM. On the
other hand, for applications with relatively high L3 misses,
frequent activity occurs in L3$ MC and the channel,
resulting in higher bus energy in the base case.

6.3 Near-Memory versus Near-Processor Caches

In this study, we evaluate the potential energy and
performance benefit of allocating the capacity of an
L3 cache closer to the processor versus closer to the
memory. In our experiments, we compared against systems
where the majority of the cache capacity is allocated as 1) a
large on-chip L2 cache and no L3 cache (not shown here),
2) a large on-chip L3 cache, or 3) a large off-chip cache. The
capacity of the large cache in each of these systems is equal
to 2 Mbytes. In the first case, we observed that the energy-
delay product is much higher than having a large L3 cache

(our base case described earlier). The increase is, on
average, 2.97 times and up to 5.34 times the base case. A
larger L2 size causes longer access latency and energy per
access than a smaller L2. Since L2 is very frequently
accessed, increasing its access latency and energy results in
a significant degradation in performance and increase in the
total energy consumption. Thus, we show the more fair
comparison against a system with a large L3 cache.

Fig. 10 compares the energy-delay product of using the
traditional memory with off-chip L3 or on-chip L3 caches
versus PA-CDRAM with near-memory caches. On-chip L3
improves over off-chip L3 as it saves the energy consump-
tion and the extra delay spent in accessing the L3$ L3
external bus. Comparing PA-CDRAM against a memory
hierarchy with a large on-chip L3 cache shows that most of
the applications achieve a lower energy-delay product. This
is due to the use of smaller near-memory caches and the
lower miss rates in PA-CDRAM. On the other hand, gcc,
twolf, and vpr experience high L2$ MC and MC$
near-memory bus traffic, which overshadow savings in the
other memory components. However, across all applica-
tions, PA-CDRAM improves the average energy-delay
product over using a large on-chip L3 cache by 17 percent.

Moreover, we compare the benefit of using an L3 cache
(on-chip and off-chip) that is divided into eight banks. We
find that, even when compared with an eight-bank on-chip L3
cache (configuration with the lowest energy consumption in
the base case), PA-CDRAM achieves a 15 percent lower
energy-delay product.

6.4 Cache-Controller Location

We quantify the trade-offs of choosing the location of the
near-memory cache controller with respect to the overall
performance and energy consumption. We simulate the
centralized and distributed cache controllers and penalize
the near-memory cache access latency accordingly. For the
centralized controller, we use Cacti’s latency computation
to slow down the access latency, except for the tag
comparison (done outside the DRAM chip). For the
distributed design, we apply the penalty (slowdown) to
the entire near-memory access latency (including tag
comparison, which takes place inside the DRAM chip). As
expected, the total execution time of an application is
slightly faster (by up to 1.5 percent) when using a
centralized controller. On the other hand, the energy
consumed in the memory buses is up to 5 percent less for
the distributed controller design. Fig. 11 shows the effect of

1450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

TABLE 3
Per-Access Latency and Energy Breakdown

of L3 and Near-Memory Caches

Fig. 10. Energy-delay product of near-memory versus near-processor cache organizations.

the cache-controller location on the bus energy, the
application’s execution time, and the overall energy-delay
product. Although the distributed design has less bus
energy, the overall energy was actually increased. This is
due to the longer execution times that increase the DRAM-
static energy, which overshadows the bus energy savings.
Although the centralized design has a 0.4 percent average
improvement in energy-delay, the distributed design is
likely to be preferable because it is backward compatible.
Hence, we stress an important feature of the distributed
controller: It enables the use of traditional Rambus and
PA-CDRAM chips interchangeably while connected to the
same MC. In that sense, it is possible to do incremental/
partial deployment of the PA-CDRAM chips if it is not
possible to do it homogeneously. We leave further study of
this issue for future work.

6.5 Effect of Multiprocess and Multithreaded
Environments

The energy profile of an application running in a single task
environment may differ from running the same application
in a multiprocess system with preemption or in a multi-
threaded environment with multiple processors. This
difference arises from the fact that an application’s locality
of reference is disturbed by the execution of other
applications which will populate the cache with their own
data. The result is the higher miss rates experienced by each
application. It is important to evaluate how these higher
miss rates affect the energy-delay of PA-CDRAM since it is
intended for such environments.

We first start with single processors running multiple
applications. Although our simulation infrastructure does
not directly support a multitasking workload, we can
approximate the effect of context switches. Our approxima-
tion uses a task scheduler that invalidates all of the cached
data for the expiring application (task) before resuming
execution of the ready task.8 The invalidation writes back all
of the dirty cache blocks to memory. We trigger an interrupt
service routine every 10 ms (similar to the time slice in
Linux). The interrupt drains the processor pipeline and
flushes the data in the caches. Upon the interrupt termina-
tion, the application’s execution is resumed.

Fig. 12 illustrates the overhead of context switching
compared to a single task execution. In all of the
applications except mesa and vortex, the overhead of context

switching is lower in PA-CDRAM than in the base case for
two reasons. First, the time overhead of flushing the
L3 cache is larger than the near-memory caches as flushing
all of the small near-memory caches can be done simulta-
neously, whereas flushing the L3 cache serializes the write-
backs to the memory chips. Second, since the number of
blocks in the L3 cache (2 Mbytes/128 bytes) is larger than
the near-memory caches (2 Mbytes/512 bytes), the L3 cache
has more address decoding and, thus, more energy is
consumed. In mesa and vortex, the energy-delay product of
the context switching overhead is higher in PA-CDRAM
due to an increase in DRAM-dynamic energy that exceeds
the time savings from the cache invalidation, as mentioned
above. This energy increase is due to the relatively large
number of near-memory cache write-backs factored by the
large block size to be written to the DRAM array.

Furthermore, we evaluate PA-CDRAM energy consump-
tion when used in a multiprocessor environment. To
emulate the multiprocessor effect, we generate traces of
L3 accesses for all applications. For each application pair,
we merge their traces based on the timestamp of each cache
access. We divide the memory address space such that each
application has access to half of the total memory size. To
have all data reside in the memory, we increase the memory
size to 512 Mbytes divided among eight chips. We maintain
the L3 (in the base case) and near-memory (in PA-CDRAM)
caches at the same capacity.

Table 4 shows the results of running pairs of application
traces on our simulator. We report energy values normal-
ized to the base case. Delay results are irrelevant since we
are running timestamped traces rather than the actual
execution of applications. As expected, running multiple
applications simultaneously increases the number of cache
misses compared to the sum of cache misses when running
each application individually. This observation is true for
both PA-CDRAM and the base case. Although the number
of misses in near-memory caches is higher than that in the
single-processor case, the total number of near-memory
cache misses is still lower than L3 misses. The lower misses
in PA-CDRAM is because PA-CDRAM originally achieves
much lower miss rates than the base case when running a
single application, as shown in Fig. 9. In Table 4, most
application pairs experience lower energy consumption by
using the PA-CDRAM memory than when using the base
case. In the base case, access to multiple DRAM chips (from
the two applications) increases the number of active chips
and, hence, increases the DRAM-core static energy. How-
ever, less energy impact is noticed in PA-CDRAM due to
the interleaved data allocation and the immediate deactiva-
tion of the DRAM core. The average energy savings across
all application pairs is 20 percent.

6.6 Sensitivity to Design Parameters

We investigate the effect of varying the different system
parameters on the energy and performance of PA-CDRAM
with respect to the traditional memory. We vary the
following parameters: 1) the cache capacity for both the
L3 and the near-memory caches to study the effect of the
capacity misses on the system, 2) the CPU frequency to
study the effect of improving the average memory access

ABOUGHAZALEH ET AL.: NEAR-MEMORY CACHING FOR IMPROVED ENERGY CONSUMPTION 1451

8. This is a worse case behavior since usually the cache will not be
completely flushed.

Fig. 11. Energy-delay product of the distributed controller normalized to

the centralized-cache-controller design.

time on the total performance, and 3) the slowdown
experienced by the logic embedded in the DRAM chip.

6.6.1 Effect of Varying the Cache Size

Varying the cache size affects both the miss rate and the cache
access costs (latency and energy). Fig. 13 shows the average
delay, energy, and energy-delay product of PA-CDRAM
while varying the total cache size from 512 Kbytes to 4 Mbytes
(excluding L1 and L2). The results are normalized to the base
case with an L3 cache of corresponding size. Note that,
although the small cache sizes tested (512 Kbytes and 1Mbyte)
are too small for a typical L3 cache, we test at those sizes to
demonstrate the trend. Increasing the cache size reduces the
L3 (or near-memory) miss rates; thus, better performance is
achieved in both cases. When the miss rate is reduced, lower
accesses to the DRAM core occur and, accordingly, the
relative savings in delay of PA-CDRAM to the base case is
lower when the cache size increases.

With respect to energy consumption, the effect of
varying the cache capacity is not as trivial. The general
trend is that increasing the cache size reduces the capacity
misses; thus, less energy is consumed due to fewer cache
replacements and DRAM accesses. However, when increas-
ing the cache size, the cache energy per hit access increases,
causing an increase in the total memory energy consump-
tion. Comparing the energy consumption of the base case
versus PA-CDRAM, we find that applications are divided
into two groups: 1) where PA-CDRAM consumes less
energy at all cache sizes, as in bzip, gzip, mesa, parser, and
vortex, and 2) where PA-CDRAM consumes less energy
only at large cache sizes. For the first group, PA-CDRAM
performs better due to accessing smaller individual caches
(with lower per-access energy). For the second group, at the
small cache sizes tested (512 Kbytes and 1 Mbyte), too many
near-memory cache replacements take place due to the
limited number of blocks (512 Kbytes

8�512 bytes ¼ 128 blocks) per
individual near-memory cache. Results for individual
applications can be found in [26].

6.6.2 Effect of Varying the CPU Frequency

Increasing the CPU frequency increases the speed gap
between the memory and the CPU, thus increasing the total
execution cycles of an application. Fig. 14 shows the energy-
delay product for PA-CDRAM at different clock rates
normalized to the base case at 2 GHz. We choose to fix the
frequency at the base case to demonstrate the effect on the
energy consumption. In our experiments, most of the
applications exhibit minimal variation in execution times.

1452 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 13. The effect of varying the cache size on execution time, energy,

and energy-delay product normalized to the base case.

TABLE 4
PA-CDRAM Energy Consumption Normalized to the Base Case

Fig. 12. Energy-delay product with and without preemption, normalized to the base case without preemption.

These applications are mainly CPU bound, where the
processor is able to mask most of the L2 miss stalls. Thus,
the relative benefit of PA-CDRAM on delay is negligible
compared to the base case (as described in Section 6.3). In
memory-bound applications (ammp, art, and mcf), increas-
ing the CPU frequency compounded with the larger
average memory access times in the base case results in
the base case suffering from significantly larger delays than
PA-CDRAM. That is, at higher CPU frequency, the value of
� increases significantly in these memory-intensive applica-
tions, making PA-CDRAM a more efficient solution.

From the energy perspective, increasing the CPU
frequency reduces the application’s execution time and,
thus, the duration of the idle periods in the DRAM. This
reduces the consumption of the static energy in the DRAM
core. In contrast, the dynamic energy in the DRAM and
caches is not affected by the processor frequency as they are
mainly dependent on the size of the transfer rather than the
frequency. In modern processors, although higher proces-
sor frequencies—with all other factors unchanged—reduce
the memory’s total energy, the memory’s energy consump-
tion can increase due to other factors, like larger memory
capacities and higher memory traffic in modern processors.
Fig. 14 shows the effect on the energy-delay product.

6.6.3 Effect of Logic Slowdown

To show the effect of the embedded logic manufacturing
technology on the overall performance of the system using
PA-CDRAM, we vary the logic slowdown factor of the near-
memory data array (assuming a slower distributed cache
controller). We add a delay penalty to the overall cache
access delay obtained from Cacti. This penalty ranges from
0 percent (fast SRAM) to 50 percent. The execution time is
normalized to the PA-CDRAM case, where there is no
performance penalty for the logic cells. In Fig. 15, we notice

that the performance degradation in the near-memory-
cache-controller design is relatively insignificant. Even
when compared to a centralized-cache-controller design
(not shown here), the overall slowdown in performance
over fast SRAM is 1.5 percent on the average (up to
6.3 percent) with a 50 percent slowdown penalty. This result
shows that delays resulting from manufacturing embedded
logic in DRAM chips do not represent any critical delays on
the overall system when using the PA-CDRAM memory.

6.6.4 Effect of CPU and Memory Bus Bandwidths

External buses can pose a performance bottleneck for
accessing external caches and memory. Our earlier results
assume ideal external buses with infinite bandwidth to
avoid the impact of such a bottleneck. To study the impact
of bus latencies on the overall performance, we limit the
bandwidths of the CPU and memory buses in the base case
and PA-CDRAM. The CPU bus bandwidth is limited by the
bus speed, bus width, and data rate (single, dual, or quad).
We assume a 64 bits wide CPU bus. Intel uses quad-rate
(sends 4 bits/cycle) buses that operate at 200, 266, or
333 MHz [27]. Hence, a CPU bus bandwidth can range from
6.25 to 10.4 Gbytes/s ð64

8 � bus freq � 4Þ. The limited band-
width increases the latency of filling an L2 block between 13
and 21 cycles in our setting. The RDRAM memory bus
provides a data bandwidth between 1.6 and 12.4 Gbytes/s
[28]. This range of bus bandwidth increases the latency of
reading an L2 block from the memory by 11 to 80 cycles. It
is typical for the CPU bus to be faster than the memory bus.

Fig. 16 shows the normalized energy-delay product
using a mixture of CPU and memory bus bandwidths.
The figure shows that energy-delay saving is more sensitive
to memory bus latency since near-memory caches use this
bus to fill the L2 cache. Although it is faster to transfer an
L2 block from an L3 cache than from a near-memory cache
(faster CPU buses), an L3 miss has a much higher latency
than a near-memory cache miss. Hence, PA-CDRAM can
improve performance even with a limited bus bandwidth.
In general, the larger the bandwidth of both buses, the
higher the savings PA-CDRAM can achieve.

7 DISCUSSION

The manufacture of PA-CDRAM can benefit from new
advances in eDRAM technology. New fabrication technol-
ogies are successful in manufacturing eDRAM cells with a

ABOUGHAZALEH ET AL.: NEAR-MEMORY CACHING FOR IMPROVED ENERGY CONSUMPTION 1453

Fig. 15. The effect of the logic slowdown in the near-memory cache on

the total execution time.

Fig. 16. The effect of different CPU and memory bus bandwidths.

Fig. 14. The effect of varying CPU frequency for the PA-CDRAM

normalized to the base case on execution time, energy, and energy-

delay product.

significantly smaller size than traditional SRAM cells. Each
eDRAM cell consists of a single transistor and a single
capacitor (1T1C cell) as opposed to six transistors in the case
of an SRAM cell. The eDRAM from NEC and 1T-SRAM
from Mosys are examples of technologies that apply the
1T1C concept. Due to the smaller cell sizes, higher densities
can be achieved. Hence, a larger capacity in a smaller chip
area is realizable. On the other hand, the access latency of
eDRAM is slightly higher, as mentioned in Section 2.

The smaller form factor of 1T1C reduces both active and
leakage energy. The relatively large SRAM cell size contains
longer metal lines, which create higher capacitance than the
ones found in a 1T1C cell. Lower cell capacitance translates
to lower current draw and power consumption, hence
reducing the cell’s active power. In addition, a 1T1C cell
contains one leakage path, as opposed to four leakage paths
in an SRAM cell. Hence, lower leakage current is drawn in
an eDRAM cell. Furthermore, the eDRAM-optimized
refresh current is significantly less than the leakage current
of an equivalent 6T memory array [29].

8 CONCLUSION

In this paper, we explore the energy efficiency of near-
memory caches rather than conventional cache hierarchies,
where most of the cache capacity is allotted “closer” to the
CPU. PA-CDRAM can be used as an alternative to
traditional power-aware memories to conserve energy and
improve performance. PA-CDRAM reduces the memory’s
energy consumption by 1) bringing the cache closer to the
memory to exploit the high memory bandwidth, 2) dis-
tributing the external cache into smaller caches that have a
low access energy and latency, and 3) increasing the
DRAM-core idle periods due to the low miss rates of
near-memory caches. Three main parameters affect the
degree of benefit of PA-CDRAM over the traditional
memory: higher L2 misses, lower � (miss rate ratio), and
higher � (memory stalls) all lead to higher energy and delay
benefits obtained from PA-CDRAM. Compared to the
traditional memory using a time-out power management,
PA-CDRAM saves up to 76 percent energy consumption
(19 percent on the average). Moreover, PA-CDRAM reduces
the energy-delay product by up to 84 percent (28 percent on
the average), where the highest gains are for memory-
intensive applications and for applications with relatively
high spatial locality.

Our evaluation shows that PA-CDRAM is more energy-
delay efficient than allocating a large fraction of the total
cache capacity to an on-chip L2, on-chip L3, or off-chip L3.
In a multitasking environment, PA-CDRAM can lower the
context switch overhead of cache invalidation through
simultaneous flushing of dirty blocks in all on-memory
caches. With the increase in cache capacity and CPU
frequency in current and future processors, the energy
savings in PA-CDRAM is expected to grow higher.

REFERENCES

[1] V. Freeh, D. Lowenthal, F. Pan, N. Kappiah, and R. Springer,
“Exploring the Energy-Time Tradeoff in MPI Programs on a
Power-Scalable Cluster,” Proc. 19th Int’l Parallel and Distributed
Processing Symp. (IPDPS ’05), 2005.

[2] O. Celebican, T. Simunic, and V. Mooney, “Energy Estimation of
Peripheral Devices in Embedded Systems,” Proc. 14th ACM Great
Lakes Symp. VLSI (GLSVLSI ’04), pp. 430-435, 2004.

[3] D. Elliott, W. Snelgrove, and M. Stumm, “Computational RAM: A
Memory-SIMD Hybrid and Its Application to DSP,” Proc. IEEE
Custom Integrated Circuits Conf. (CICC ’92), pp. 30.6.1-30.6.4, 1992.

[4] W. Hsu and J. Smith, “Performance of Cached DRAM Organiza-
tions in Vector Supercomputers,” Proc. 20th Ann. Int’l Symp.
Computer Architecture (ISCA ’93), pp. 327-336, 1993.

[5] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M.J. Irwin,
and A. Sivasubramaniam, “vEC: Virtual Energy Counters,” Proc.
ACM SIGPLAN-SIGSOFT Workshop Program Analysis for Software
Tools and Eng. (PASTE ’01), pp. 28-31, 2001.

[6] D. Keitel-Schulz and N. Wehn, “Embedded DRAM Development:
Technology, Physical Design, and Application Issues,” IEEE
Design and Test of Computers, vol. 18, no. 3, pp. 7-15, July-Sept.
2001.

[7] “NEC Embedded DRAM,” http://www.necelam.com/edram90/,
2005.

[8] S. Tomashot, “IBM Embedded DRAM Approach,” http://www-
306.ibm.com/chips/techlib/techlib.nsf/products/Embedded_
DRAM, 2003.

[9] B. Davis, “Modern Dram Architectures,” PhD dissertation, Univ.
of Michigan, Ann Arbor, 2000.

[10] R. Koganti and G. Kedem, “WCDRAM: A Fully Associative
Integrated Cached-DRAM with Wide Cache Lines,” technical
report, Dept. of Computer Science, Duke Univ., 1997.

[11] A. Hegde, N. Vijaykrishnan, M. Kandemir, and M. Irwin, “VL-
CDRAM: Variable Line Sized Cached DRAMs,” Proc. First IEEE/
ACM/IFIP Int’l Symp. Hardware/Software Codesign and System
Synthesis (CODES+ISSS ’03), pp. 132-137, 2003.

[12] Z. Zhang, Z. Zhu, and X. Zhang, “Cached DRAM for ILP
Processor Memory Access Latency Reduction,” IEEE Micro,
vol. 21, no. 4, pp. 22-32, July/Aug. 2001.

[13] Rambus, “Products Data Sheets,” http://www.rambus.com/
products/rdram/documentation, 2005.

[14] A. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power Aware Page
Allocation,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), pp. 105-116, 2000.

[15] H. Huang, P. Pillai, and K. Shin, “Design and Implementation of
Power-Aware Virtual Memory,” Proc. Usenix Ann. Technical Conf.,
pp. 57-70, citeseer.ist.psu.edu/582414.html, 2003.

[16] V. Delaluz and M.J. Irwin, “DRAM Energy Management Using
Software and Hardware Directed Power Mode Control,” Proc.
Seventh Int’l Symp. High-Performance Computer Architecture (HPCA
’01), pp. 159-169, 2001.

[17] P. Shivakumar and N. Jouppi, “Cacti 3.0: An Integrated Cache
Timing, Power, and Area Model,” Technical Report 2001.2,
Compaq Research Laboratories, 2001.

[18] N. AbouGhazaleh, B. Childers, D. Mossé, and R. Melhem, “Near-
Memory Caching for Improved Energy Consumption,” Proc. 23rd
Int’l Conf. Computer Design (ICCD ’05), pp. 105-110, 2005.

[19] SimpleScalar, “Architecture Simulator,” http://www.
simplescalar.com, 2004.

[20] N. AbouGhazaleh, B. Childers, D. Mossé, and R. Melhem, “Energy
Conservation in Memory Hierarchies Using Power-Aware
Cached-DRAM,” Proc. Dagstuhl Seminar Power-Aware Computing
Systems, Apr. 2005.

[21] Y. Zhong, S. Dropsho, and C. Ding, “Miss Rate Prediction across
All Program Inputs,” Proc. 12th Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT ’03), pp. 79-90, 2003.

[22] M. Gries and A. Romer, “SDRAM and RDRAM Modeling for
Simplescalar Simulator,” http://www.tik.ee.ethz.ch/ip3/
software/simplescalar_mem_model.html, 2004.

[23] W. Lin, S. Reinhardt, and D. Burger, “Reducing DRAM Latencies
with an Integrated Memory Hierarchy Design,” Proc. Seventh Int’l
Symp. High-Performance Computer Architecture (HPCA ’01), pp. 301-
312, 2001.

[24] Pentium, “Intel Pentium 4 EE Processor,” http://www.intel.com,
2003.

[25] Y. Aghaghiri, F. Fallah, and M. Pedram, “Transition Reduction in
Memory Buses Using Sector-Based Encoding Techniques,” IEEE
Trans. Computer-Aided Design, vol. 23, no. 8, pp. 1164-1174, 2004.

[26] N. AbouGhazaleh, B. Childers, D. Mossé, and R. Melhem, “Energy
Conservation in Memory Hierarchies Using Power-Aware
Cached-DRAM,” Technical Report TR-05-123, Dept. of Computer
Science, Univ. of Pittsburgh, 2005.

1454 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

[27] Intel, “Desktop Chipset Datasheets,” http://www.intel.com/
products/desktop/chipsets/index.htm, 2006.

[28] RDRAM, “RDRAM Technology Summary,” http://www.rambus.
com/assets/documents/products/RDRAMTechnology/
Summary_091905.pdf, 2005.

[29] J. Bond, “Memory Amnesia Could Hurt Low-Power Design,”
http://www.commsdesign.com/design_corner/OEG20030730
S0018, 2003.

Nevine AbouGhazaleh received the BE and
MS degrees in computer engineering from the
Arab Academy for Science and Technology in
1996 and 1999, respectively, and the MS degree
in computer science from the University of
Pittsburgh in 2003. She is a PhD student at the
University of Pittsburgh. Her research interests
include computer architecture, operating sys-
tems, and embedded systems. Currently, she is
researching power management in real-time

systems. She is a student member of the IEEE. She is a recipient of
Google’s Anita Borg Fellowship and a Josephine DeKarman Fellowship.

Bruce R. Childers received the BS degree in
computer science from the College of William
and Mary in 1991 and the PhD degree in
computer science from the University of Virginia
in 2000. He is an assistant professor in the
Department of Computer Science at the Uni-
versity of Pittsburgh. His research interests
include computer architecture, compilers and
software development tools, and embedded
systems. Currently, he is researching continu-

ous compilation, power-aware computer architecture for small and
portable systems, and compiler optimization for embedded systems. He
is a member of the IEEE and the IEEE Computer Society.

Daniel Mossé received the BS degree in
mathematics from the University of Brasilia in
1986 and the MS and PhD degrees in computer
science from the University of Maryland in 1990
and 1993, respectively. He has been a professor
at the University of Pittsburgh since 1992. His
research interests include fault-tolerant and real-
time systems, as well as networking. The current
major thrust of his research is real-time systems,
power management issues, and networks (wire-

less and security). Typically funded by the US National Science
Foundation and the US Defense Advanced Research Projects Agency,
his projects combine theoretical results and actual implementations. He
was an associate editor of the IEEE Transactions on Computers and is
currently on the editorial board of the Kluwer Journal of Real-Time
Systems. He has served on program committees (PCs) and as a PC
chair for most major IEEE and ACM-sponsored real-time conferences.
He is a member of the IEEE and the IEEE Computer Society.

Rami G. Melhem received the BE degree in
electrical engineering from Cairo University in
1976, the MA degree in mathematics and the
MS degree in computer science from the
University of Pittsburgh in 1981, and the PhD
degree in computer science from the University
of Pittsburgh in 1983. He was an assistant
professor at Purdue University prior to joining
the faculty of the University of Pittsburgh in
1986, where he is currently a professor of

computer science and electrical engineering and the chair of the
Computer Science Department. His research interests include real-time
and fault-tolerant systems, optical interconnection networks, high-
performance computing, and parallel computer architectures. He was
on the editorial board of the IEEE Transactions on Computers and the
IEEE Transactions on Parallel and Distributed Systems. He is the editor
for the Kluwer/Plenum book series on computer science and is on the
editorial board of the IEEE Computer Architecture Letters and the
Journal of Parallel and Distributed Computing. He has served on the
program committees of numerous conferences and workshops and was
the general chair of the Third International Conference on Massively
Parallel Processing Using Optical Interconnections (MPPOI ’96). He
serves on the advisory boards of the IEEE Technical Committees on
Parallel Processing and on Computer Architecture. He is a fellow of the
IEEE and a member of the IEEE Computer Society and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ABOUGHAZALEH ET AL.: NEAR-MEMORY CACHING FOR IMPROVED ENERGY CONSUMPTION 1455

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

