Dynamic Rate-Selection for Extending the Lifetime of Energy-Constrained Networks

Nevine AbouGhazaleh, Patrick Lanigan, Sameh Gobriel, Daniel Mossé, Rami Melhem

University of Pittsburgh www.cs.pitt.edu/PARTS

Introduction

Energy constraints in ad-hoc and sensor networks

Introduction

- Energy constraints in ad-hoc and sensor networks
- Different traffic-load for different flows varies the battery level at each node.

Nevine AbouGhazaleh

Introduction

- Energy constraints in ad-hoc and sensor networks
- Different traffic-load for different flows varies the battery level at each node.
- Within the same flow, nodes with low battery exerts more relative energy.

Connection-Flow Lifetime

Problem: extend the lifetime of flows (networks)

Cause of problem: nodes with low battery level deplete faster than other nodes causing path disconnection.

Solution: explore the tradeoff between transmission energy and transmission rate; the rate computed is based on the energy level of the node.

Example

For flow A-E:

 All nodes transmit with highest energy→
 B dies after <u>12739</u> packets

Node B transmits with ½ ^E
 the power of others →
 B dies after <u>59378</u> packets

5x Lifetime improvement for flow A-E

Models

- Each flow has:
 - total propagation time T_{tot}
 - other estimated delays dother
 - ex: interference, collision
 - delivery time constraints for its packets D

$$D \ge T_{tot} + d_{other}$$

- A path is disconnected when any of its nodes fail → flow lifetime
- Minimal processing in nodes

Energy Models

In QAM model:

$$P = (C \cdot R_s(2^b - 1) + F \cdot R_s)$$

$$t_{bit} = \frac{1}{R} = \frac{1}{R_s b}$$

Where:

 R_{S} is the symbol rate, b is the bits per symbol

Cand Fare quality of transmission and electronic circuitry constants

$$E_{bit} = P \cdot t_{bit}$$
$$= (C(2^b - 1) + F) \frac{1}{b}$$

b is typically even integer value

Dynamic Rate Selection

Find R_i for each node $i \in \text{flow } f$ s.t. packets in f meet time constraint $\sum t_i \leq T_{tot}$

Flow
$$f$$

$$t_{i}$$

$$t_{i+1}$$

Steps:

- Compute Energy Budget
- Rate computation & discretization
- Communicating the rate values

Energy Budget Modeling

$$LE_{i} = \omega_{tx}E_{i} + \omega_{rx}E_{i+1}$$

$$\omega_{tx} = \frac{P_{tx}}{P_{tx} + P_{rx}}$$

$$\omega_{rx} = \frac{P_{rx}}{P_{tx} + P_{rx}}$$

Rate Selection

Allocate t_i according to LE_i

$$t_{i} = T_{tot} \frac{1/LE_{i}}{\sum_{k=0}^{n-2} 1/LE_{k}}$$

To avoid buffer overflow:

$$R_i = \max \left\{ \frac{t_{\text{max}}}{t_i} R_{\text{max}}, R_{src} \right\}$$

Discrete Rate Setting

Simple scheme:

Round rate to the next highest discrete rate.

Iterative scheme:

Exploit the slack time from other node's discretized nodes.

Iterative Rate Discretization

Simple Heuristic

- 1. Iteratively select the highest link energy
- 2. Round the rate
- 3. Recompute available T_{tot}
- 4. Repeat from 1

Rate Notification

step	Original protocol	Added support
1	DSR route discovery	Collect battery level
2	Return of discovered route	Notify src node
3	Packet transmission	Notify nodes with rates in packet's header

Evaluation Setup

- Trace driven ns-2 simulation
- UDP traffic
- Discrete Rates 2, 4, 6 & 8 Mbps
- Single path (5 nodes) & single critical node
- Control packet transmitted at 2Mbps

Lifetime Extension Evaluation

- Study the effect of
 - Varying the traffic load
 - Different discretization schemes
- Compared schemes:
 - Dynamic rate selection (DRS)
 - No power management (NPM)
 - Static rate selection (Static)

Varying the Traffic Load

Large T_{tot} 7.5X improvement in # of data packets

Effect of different Rate Discretization

Normalized to Static rate selection,

More savings for low energy budgets

Conclusions

- Dynamically varying the TX rate for each node increases the number of packets delivered
 - by 7.5x (over NPM and for high T_{tot})
 - By up to 12% over Static data rate
- DRS requires minimal modifications and has relatively low overheads

Future Work

- Apply DRS for multiple connection flows → fair resource allocation
- Integrating DRS on top of power aware routing