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Background: Proteomic peptide profiling is an emerging technology harbouring great expectations to enableAbstract
early detection, enhance diagnosis and more clearly define prognosis of many diseases. Although previous
research work has illustrated the ability of proteomic data to discriminate between cases and controls,
significantly less attention has been paid to the analysis of feature selection strategies that enable learning of such
predictive models. Feature selection, in addition to classification, plays an important role in successful
identification of proteomic biomarker panels.
Methods: We present a new, efficient, multivariate feature selection strategy that extracts useful feature panels
directly from the high-throughput spectra. The strategy takes advantage of the characteristics of surface-en-
hanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) profiles and enhances
widely used univariate feature selection strategies with a heuristic based on multivariate de-correlation filtering.
We analyse and compare two versions of the method: one in which all feature pairs must adhere to a maximum
allowed correlation (MAC) threshold, and another in which the feature panel is built greedily by deciding among
best univariate features at different MAC levels.
Results: The analysis and comparison of feature selection strategies was carried out experimentally on the
pancreatic cancer dataset with 57 cancers and 59 controls from the University of Pittsburgh Cancer Institute,
Pittsburgh, Pennsylvania, USA. The analysis was conducted in both the whole-profile and peak-only modes. The
results clearly show the benefit of the new strategy over univariate feature selection methods in terms of
improved classification performance.
Conclusion: Understanding the characteristics of the spectra allows us to better assess the relative importance of
potential features in the diagnosis of cancer. Incorporation of these characteristics into feature selection
strategies often leads to a more efficient data analysis as well as improved classification performance.

Proteomic profiling is an increasingly popular tool in the search disease using a relatively inexpensive and minimally invasive
for novel surrogate biomarkers for cancer diagnosis, prognosis and (serum) or completely noninvasive (urine) biospecimen. Hope
measures of response to therapy.[1-3] The greatest promise of also exists that different cancer types[4] and therapy-response
proteomic profiling is the possibility of early detection of the
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phenotypes might be reproducibly distinguished, thereby allowing nth position.[19] An alternative approach to dimensionality reduc-
earlier application and assessment of appropriate therapies. tion is to construct a small set of aggregate features such that every

feature combines many inputs in the profile. Examples of suchThe majority of the work on surface-enhanced laser desorption/
approaches include clustering,[20] principal component analysisionisation time-of-flight mass spectrometry (SELDI-TOF-MS)
(PCA)[21] and independent component analysis (ICA).[22,23]analysis focuses on the classification problem (see, for example,

Adam et al.,[3] Jones et al.[5] and Petricoin et al.[1]). The potential The majority of published previous work on analysis of prote-
efficacy of the SELDI-TOF-MS serum protein profiling for cancer omic data has focused on one feature reduction/classifier ap-
classification has been recently demonstrated in multiple studies, proach. Although the results obtained in such a way clearly
including human breast,[6,7] colon,[7] head and neck,[8] liver,[9] illustrate the ability of the proteomic profiles to differentiate
lung,[10,11] ovarian[1,12] and prostate cancer.[13-16] The studies de- between cases and controls, no answer has been provided to the
scribe diagnostic profile features and learning algorithms based on question of which features are best suited for such a task. In
these features, which provide at least 80%, and in some cases contrast, we believe that some of the results and the means by
>90%, classification accuracy between cancer cases and controls. which they are presented, especially in the earlier literature on
From a clinical viewpoint, such positive results demonstrate the proteomic profiling, provide an incomplete and somewhat mis-
potential promise of this new bioassay technology. leading picture about the relevance of certain features.

The objective of the classification analysis is to build a predic- The understanding of the importance of various features is
tive model to classify profile samples with the best possible crucial for obtaining robust (i.e. reproducible) classifiers and for
generalisation performance. The success of the model-building finding reliable and accurate disease signatures. This is one of the
process is measured using a relatively standard training and testing main objectives of this study. Following this path, we present the
setup. In the training stage, the classifier is learned (or built) using results of the initial analysis of a number of simple feature reduc-
a subset of samples obtained during the study. In the testing stage, tion strategies on a pancreatic cancer dataset. Our intention is to
the ability of the model to correctly predict the samples as diseased build the understanding of the proteomic data and of the effects of
or healthy is tested on the independent subset of samples that were various features on their ability to discriminate case versus control
withheld from the training stage. The performance on the withheld profiles. Since the meaning of features is defined in the context of
data is used to approximate the accuracy of the model on future, the classification task, we evaluate the performance of feature
yet to be seen, samples. reduction strategies indirectly by examining the quality of classifi-

ers built upon generated features.The learning task is especially challenging in the case of
high-throughput proteomics data because of the dimensionality The pancreatic dataset used in this study was collected at the
problem. Typically, the total number of cases available to train the University of Pittsburgh Cancer Institute (UPCI), Pittsburgh,
classifier is small relative to the number of intensity measurements Pennsylvania, USA.1 It consists of 116 profile samples, with 57
of each proteomic profile. The problem is of a statistical nature. cases and 59 smoking-, age- and sex-matched controls. We start by
The parameters of a classifier that uses readings at all profile examining the pancreatic data using relatively simple differential
positions cannot be reliably estimated using a small number of feature selection methods based on univariate analysis. Unfortu-
samples, and estimates are made with high variance. This prompts nately, these methods promote features that lead to the best indi-
the development of feature reduction techniques that convert vidual predictors; thus, the benefit of combining many of these
high-dimensional proteomic profiles to a small set of features that features can be marginal. To alleviate this problem, we present a
in turn can be input into a classifier. multivariate refinement of differential methods that is based on

There are many potential ways of defining and performing feature de-correlation. The idea of the approach is to ensure that
feature reduction. One of the classical solutions is the selection of none of the features selected is correlated with other features by
a smaller subset of features derived from a large set of profile more than some fixed correlation threshold. The method appears
inputs. The classifier is then built using the reduced input set. to be quite effective in the context of proteomic profiles with many
Options for this approach range from finding positions in the highly correlated positions. We compare the refined method with a
profiles that exhibit statistically significant differences (as per- peak selection approach, where features are restricted to peak
formed in many gene selection approaches to microarray analysis) positions. Peak selection methods are quite popular among
to ‘peak’ selection algorithms,[17] which use only positions on SELDI-TOF-MS researchers in particular, because peaks, as ob-
profiles that correspond to peaks, and binning,[18] which uses every served in profiles, are believed to represent discrete proteins or

1 The pancreatic data were provided courtesy of Herbert J. Zeh III, David C. Whitcomb and William L. Bigbee.
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their fragments. We show that, in terms of performance, the
differential feature selection methods with de-correlations com-
pare favourably with performance of peak selection methods. The
advantage of these methods is that they do not restrict their
attention to peaks only; instead, the whole profile is searched for
discriminative features. Although the results presented in this
article do not give a definite answer to the problem of feature
selection, we believe they provide new insights into feature selec-
tion approaches and thus help to narrow the search for clinically
significant cancer signatures.

Data Source and Data Preprocessing

SELDI-TOF-MS

Ciphergen Biosystems Inc. (Fremont, CA, USA) SELDI-TOF-
MS is used for the mass analysis of compounds such as proteins,

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

m /z (× 104) [Da/unit charge]

In
te

ns
ity

Fig. 1. A typical surface-enhanced laser desorption/ionisation time-of-flight
(SELDI-TOF) profile plotting relative ion flux vs mass-to-charge (m/z) ratio.
Note the relative abundance of species below 20 000Da.

peptides and nucleic acids (with masses ≤200 000Da) within solu-
tions such as serum, urine, cell lysates or metabolites. Profiles may Instrument variations manifest themselves as two types of
be determined for whole sera via ‘neat spotting’ or for fractionated errors: intensity measurement errors and mass inaccuracy. The
samples, with profiles determined for each sample fraction. intensity measurement error is due to an erroneous intensity read-
SELDI-TOF-MS operates by capturing compounds of interest on a ing of a certain mass-to-charge (m/z) ratio at the ion detector. Mass
chip (ProteinChip Array, Ciphergen Biosystems Inc.). The sur- inaccuracy refers to the misalignment of readings for different m/z
face of the chip possesses affinity characteristics such as ion ratios. Figure 2 illustrates the scope of the problem by comparing
exchange, hydrophobicity or antigen/antibody, which cause com-

two profiles obtained for the same pooled reference (quality assur-
ponents of the mixture to selectively adsorb to the surface of the

ance/quality control [QA/QC]) serum used by the Early Detection
chip. Contaminants are removed by washing. After addition to the

Research Network (EDRN) programme. The displayed profiles
chip of ‘energy absorbing molecules’ (matrix), the remaining

underwent external calibration by Ciphergen Biosystems Inc., and
bound substances are analysed under high vacuum by laser de-

no other correction was applied.
sorption/ionisation time-of-flight mass spectrometry. The time of
flight through the vacuum is converted to provide inferred molecu-

Intensity Measurement Errors
lar weight information using calibrated mass standards. An exam-

Measurements are typically made with up to 400 laser ‘shots’ple of a profile is shown in figure 1.
per spot, with analyses of the ionised molecules summed and
averaged over these spectrograms. The intensity measurementProfile Inaccuracies

error refers to the error of the intensity reading for a fixed m/z ratio.
The profiles obtained through SELDI-TOF-MS are far from

The signals in profiles exhibit, in addition to the random signal
perfect. Multiple sources of variations affect the profiles. These

component, systematic additive and multiplicative error compo-
include sample-to-sample variation in sample collection, variation

nents.
in processing protocols,[24] variation in the instrument conditions

The additive or baseline error refers to a systematic measure-over time, variation in the intensity of current and laser intensity
ment error in which the baseline of all measurements on the profilefluctuations, and different magnitudes of the signal due to surface
differs from zero. This is apparent in figure 2a where the baselineirregularities. All these affect our ability to analyse the profiles. In
measurements for the same serum differ from profile to profile.addition to systematic sources, if we analyse samples from multi-
Moreover, we can also observe baseline drifts where the intensityple individuals then natural biological variations in sera are
of a baseline signal changes over regions within the profile. Theobserved and detected. These show up as differences in intensity
multiplicative or scaling error refers to a profile-specific or re-values or as the presence or absence of features in the profile. All
gion-specific error factor that affects the magnitude of the signalsources of variations lead to serious challenges in interpretive
relative to the baseline. This is visible in figure 2b where theanalysis for the case versus control profile differentiation.
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intensity readings of the same sera vary greatly between the two ple, see Baggerly et al.[25]). The tradeoffs are clear: significant
profiles. preprocessing may eliminate our ability to capture biological

variations and important clues in case versus control discrimina-
Mass Inaccuracy tion. On the other hand, unprocessed data can be so noisy that any
All stochastic variations in profiles show up as differences in useful information is degraded and difficult to work with.

intensity readings. The mass accuracy (or variability in the physi-
cal location of m/z positions in the profile) is reported to be Smoothing
approximately 0.02Da if externally calibrated. This may appear Smoothing serves to eliminate a high-frequency component in
small, but the mass drift (inaccuracy) can lead to serious chal- the signal. Smoothing can be implemented through various tech-
lenges in the interpretive analysis of many samples. Any variation niques, the most popular of which involves fitting kernels (Gaus-
in m/z calibration translates, for all downstream analyses, into sian, quadratic, etc.) to the signal. High-frequency variation is
unwanted, potentially systematic, variation in intensity. This is eliminated by local averaging of the signal. Note that smoothing is
evident in the comparison of QA/QC reference sera in figure 2c. risky and may result in a loss of information if this high-frequency
Profiles suggest that even small amounts of a phase shift can lead component carries real biological information.
to large differences in intensity readings and subsequent problems
in interpretive analysis. Profile Rescaling

A particular profile may suffer from an overall weakness in
signal. Variation in the sensitivity of the ion detector or amount ofPreprocessing
retained molecules on the chip surface may result in profiles that

Preprocessing includes steps taken to clean and modify data, seem to be on a different scale (see figure 2b). Normalisation or
with the expectation that most of the useful information content rescaling of these profiles allows us to compare them on the same
carried by the profiles is preserved. Typical preprocessing steps scale. One simple strategy to standardise the profile can be con-
include smoothing, rescaling, variance stabilisation, baseline cor- ducted by dividing each position in a spectrum by the average
rection and profile alignments. Views on preprocessing steps intensity of the entire spectrum (equation 1):
differ widely. Many researchers prefer to work on unprocessed
data, citing the risk of the loss of useful information or the TIC

Nxi  = xi
*

introduction of systematic error during preprocessing (for exam- (Eq. 1)
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Fig. 2. Two surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) profiles obtained for the same pooled
reference sera. The differences are apparent in the (a) baseline, (b) intensity measurements and (c) mass inaccuracies. m/z = mass-to-charge ratio. 
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Fig. 3. Baseline correction on a surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) profile: (a) a profile with a
baseline drift and (b) the corrected profile. The additive component in the signal is removed and the baseline is shifted to the zero intensity level. m/z =
mass-to-charge ratio. 

where xi* and xi denote the new and previous intensity value, forms.[19] By applying the transformation to intensity readings
respectively, at position i; N denotes the number of intensity within the profile, the multiplicative noise component is stabilised.
measurements; and TIC denotes the total ion current that is given

Baseline Correction
by the sum of intensities under the profile curve. Another strategy

The goal of baseline correction is to reduce the additive bias in
is to correct the signal in the ith profile position[25] as (equation 2):

the intensity signal (figure 2a). Figure 3 illustrates the process of
baseline correction on a profile. The method removed the additive
component in the signal and brought the baseline to zero. The

*
xmax − xmin

xi − xminxi =

baseline algorithm used in figure 3 uses local minima-based cor-(Eq. 2)
rection, where the baseline is defined by the minimum value overwhere xmin and xmax denote the minimum and maximum intensity
the local window of a fixed width. To account for what appears toof the signal in the profile. This correction rescales the signal and
be an exponentially decreasing baseline, the baseline correction istransfers it into the [0,1] range. More complex normalisation
restricted to a non-increasing function after the local minimum hasapproaches exist. For example, we recently developed a polynomi-
reached its highest value.al-based rescaling approach (Hauskrecht et al., unpublished data)

One issue that arises in the context of baseline correction is thatthat multiplies every profile using a low-order polynomial. The
the noise on the intensity measurement appears to be stronglycoefficients of the polynomial are found using linear regression
correlated with the magnitude of the measurements; consequently,methods. The detailed description and comparison of this method
this means that any baseline correction results in the loss ofis outside of the scope of this article.
information. Thus, any signal rescaling or transformation (e.g.
cube-root transform) should be performed before the baseline isVariance Stabilising Transformations
corrected.

One characteristic of SELDI-TOF-MS profiles is that the vari-
Profile Alignmentance of the noise signal tends to be higher for higher intensity

values. One possible technique to reduce the effect of such a noise The mass inaccuracy problem (see figure 2c) can be resolved
component is to apply smoothing. Although this allows us to through profile alignment methods. A number of strategies exist
reduce the noise, the variability in the strength of the noise signal for performing profile alignment. One option is to define a refer-
with regard to the intensity remains. A more methodical solution ence profile in terms of a set of established biomarkers that are
to correct for higher variance of the noise component in response easily identifiable in every profile (internal calibration). Another
to higher intensity values is to apply variance stabilising transfor- approach is to include indicator peptides in the serum to purposely
mations,[26] such as square-root, cube-root2 or logarithmic trans- populate the profile with peaks to be expected at certain m/z values

2 The cube-root transform for SELDI-TOF-MS profiles was suggested to us by Jeffrey Morris (personal communication) from the University of Texas
MD Anderson Cancer Center, Houston, Texas, USA.
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(external calibration). The intensity readings between these peaks spot per ProteinChip of a pooled reference serum sample for
could then be stretched or shrunk along the m/z axis appropriately. quality assurance. After 30 min incubation with shaking at room
Unfortunately, because of the locality of m/z errors, this approach temperature, the chips were washed twice with PBS, rinsed twice
would require the addition of several thousand peptides to the with high-performance liquid chromatography (HPLC)-purity
serum in order to properly recapture the information lost through water and air-dried. Prior to mass spectrometry, two 1µL aliquots
mass inaccuracy. of a subsaturated solution of sinapinic acid were added to each

spot, with applications separated by a 5-min drying time. TheMore general profile alignment methods, particularly various
ProteinChip arrays were read in a PBSIIc mass spectrometerincarnations of the time-warping algorithm,[27] attempt to realign
(Ciphergen Biosystems Inc.) using positive ion mode, with timetwo profiles by trying to minimise the differences in their signals.
delay focusing, from 0 to 100 kDa. Mass calibration was per-The algorithms rely on the dynamic programming paradigm. Un-
formed externally (Ciphergen Biosystems Inc.) using a mixture offortunately the memory and computational requirements of the
seven peptide species from 1 to 7 kDa.method are quadratic in the length of the profile, which in the case

of SELDI-TOF-MS consists of ~60 000 positions. Constraints on The data preprocessing protocol was fixed and included vari-
the maximum allowed warp shift[28] can alleviate the memory and ance stabilisation, baseline correction, smoothing and alignment.
computational problem to some degree. Alternatives to time warp- We performed a cube-root signal transformation to stabilise vari-
ing via dynamic programming (with possible profile deletions and ance in the data. Following this, baseline correction was per-
insertions) are parametric or semi-parametric time-warping meth- formed using an in-house baseline procedure that corrects the
ods.[29,30] In such a case, the warping function is restricted to a low- signal according to the local signal minimum. A window size of
order polynomial, and the parameters of the polynomial are fit 200 m/z positions was used as a default to detect the minimum. We
iteratively via regression by minimising the sum of the squared used Gaussian kernel smoothing to lightly smooth the signal.
distance metric. Finally, we performed a peak-based alignment by choosing peaks

within the mean profile and warping them to fit the local character-
istics of this reference profile.Preprocessing of the Pancreatic Cancer Dataset from

the University of Pittsburgh Cancer Institute
Classification of Proteomic Profiles

The pancreatic cancer dataset analysed in this study was col- The primary objective of proteomic profile data analysis is to
lected at the UPCI and includes 57 preoperative cancer cases and build a predictive model that is able to determine the target
59 age-, sex- and smoking history-matched controls. The serum condition (case or control) for a given patient’s profile. The
samples were denatured and processed in duplicate on a single predictive classification model is built from a set of SELDI-TOF-
type (IMAC3-Cu) ProteinChip Array. The IMAC3-Cu surface MS profiles (samples) assembled during the study. Each sample in
type chosen, which selectively retains metal-binding peptides/ the dataset is associated with a class label determining the target
proteins, has been previously shown[31] to provide reproducible patient condition (case or control) we would like to automatically
and feature-rich protein profiles from human serum. Serum sam- recognise.
ples were processed using robust procedures employed for an More formally, let D be a set of data pairs {<x1, y1>, < x2, y2>,
ongoing multisite validation of a SELDI-TOF-MS-based test for …, < xn, yn>}, where xi denotes inputs and yi their designated
prostate cancer,[32,33] of which UPCI is a member, and all steps outputs. In the case of proteomic profiles, xi corresponds to profile
were conducted on a Biomek 2000 liquid-handling robotic work- readings (a vector of m/z intensity values) and yi to the class label:
station (Beckman Instruments, Inc., Fullerton, CA, USA). Whole case or control (cancer or non-cancer). The objective is to build a
serum samples were denatured by mixing 20µL of serum with predictive model f: X → Y that maps inputs (profiles) to outputs
30µL of 8 mol/L urea/1% 3-[(cholamidopropyl)dimethylammoni- (labels) such that the mapping achieves high accuracy on future,
o]-1-propanesulfonic acid (CHAPS) in phosphate-buffered saline yet to be seen, profiles. The classification (prediction) refers to the
(PBS) in a 96-well microtitre plate and incubating 30 min with process of applying the learned model f: X → Y to profiles and
shaking at 4°C. Samples were diluted by addition of 100µL of 1 assigning the output label for them.
mol/L urea/0.12% CHAPS in PBS, then performing a serial 1 : 5
dilution in PBS. From the final dilution, 100µL aliquots were Classifier Models
reacted with a single spot on IMAC3-Cu ProteinChip Arrays,
which were preloaded with copper sulphate. Samples were applied Many classifier models and learning approaches have been
in a blinded layout of case and control samples, along with one developed and are available for these classification tasks. Their
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common property is that they represent the mapping between Evaluation of Classifier Methods
inputs and outputs. For example, some classifiers including

Our objective is to obtain models that achieve accurate predic-CART [34] and C4.5[35] extract classification rules in terms of
tions on future profiles. Since these examples are unobtainable, thedecision trees. Some methods, including logistic regression,[36]

ability of a classifier model f to generalise to such data is analyseddetermine the output by a learning set of parameters used to weight
by splitting the available data into two subsets: a training set and aindividual inputs. Other examples include support vector ma-
test set. The training set consists of profile samples used to pick thechines (SVMs),[37-39] the naive Bayes classifier[40,41] and multilayer
features and learn the model. The test set consists of profileneural networks.[42-44]

samples withheld from the learning stage that are used to approxi-In general, classification models attempt to partition a high-
mate the ability of the classifier to correctly predict future, yet todimensional space of profile measurements (x), such that the case
be seen, data.and control profiles fall into distinct regions. Many existing mod-

The complete performance picture is given by the confusionels, such as logistic regression or the SVM, achieve the partition-
matrix that represents the percentages of true positive (TP), trueing by defining a linear decision boundary: a hyperplane that
negative (TN), false positive (FP) and false negative (FN) results.separates a high-dimensional input space x into two subspaces.
Secondary measures can be derived from the confusion matrix andDifferent models may use different optimisation criteria. For ex-
include the following:ample, the SVM[37-39] is a technique that computes a decision
Error rate (E): FP + FNboundary between two classes by restricting its attention only to
Sensitivity (SN): TP/(TP + FN)the samples (support vectors) that are most critical for separating
Specificity (SP): TN/(TN + FP)the two groups. In our case, the decision boundary is a hyperplane
Positive predictive value (PPV): TP/(TP + FP)that is maximally distant from the support vectors on either side of
Negative predictive value (NPV): TN/(TN + FN).the hyperplane. The hyperplane is defined by the equality (equa-

These performance measures can be computed for both thetion 3):
training set and test set. Test set results are more important sincewT x + w0 = 0
they testify about how the classifier generalises to future data.

(Eq. 3)
However, the differences in training and testing performance

with parameters w and w0, where w0 is the distance between the
statistics are still important and carry useful information. For

support vectors of each class, and w is the normal to the hyper-
example, a large separation between training and test errors is a

plane.
sign of high variance of the estimates of the model parameters and

The parameters of the model may be learned through quadratic indicates potential overfitting of the model.
optimisation with Lagrange parameters.[39] Then, the decision
boundary is given by (equation 4): Pitfalls and Solutions

Existence of a Perfect Classifier
å
iÎSV

TˆŵT x + w0 = αiyi (xi x) + w0

(Eq. 4) Because of intrinsic stochasticity in the data and its source, it
may be impossible to obtain a perfect classifier with zero expectedwhere i are Lagrange parameters obtained through the optimisa-
error. For example, a noisy data source may influence the featurestion process and yi represents the class label for xi with two
used to discriminate a case and a control so that the two samplespossible values, –1 or 1. Note that only samples that correspond to
look alike and it is impossible to distinguish between them. In

support vectors (SV) define the hyperplane boundary, to which general, we should not expect perfect test errors in stochastic
environments.is normal. The decision  made by the classifier for a new input x

is given by (equation 5):
Lucky Train/Test Splits

Seeing a small test error on a single training/test split is a good
sign, yet it is not always a reason for optimism. In general, it is notiÎSV

å
Tαiyi (xi x) + w0ú

û

ù

ê

ë

é
ŷ = sign

(Eq. 5) very hard to obtain a test result that appears to be very good if we
which corresponds to the side of the hyperplane on which the look at many different data splits and pick the best result. For
datapoint occurs, either positive or negative. The choice of the example, different training/test data splits on completely random
separating hyperplane in the SVM algorithm incorporates regu- data (with expected error of 50%) can produce different test errors,
larisation effects,[37] which makes it less susceptible to overfitting. and a few among them may even obtain, by chance, an error value
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equal or close to zero. So even if the data given to us are model’s performance under a 0-1 loss condition that reflects the
completely random and we cannot learn anything, it is possible to situation in which type 1 and type 2 errors (FP and FN) carry
occasionally get low test errors by being lucky on a single training/ approximately the same weight. However, many problems require
test split. a different loss function in which misclassifications of case and

control use different weights. The ability of a binary classifier to
Approximation of the Generalisation Performance incorporate a different loss function for the problem at hand can be
To eliminate a possible bias due to a lucky or an unlucky captured and examined independent of the loss function in terms

training/test split we can asses the quality of a classifier by of the receiver operating characteristic (ROC). The separation of
learning and testing its performance on multiple (typically ran- the two classes with different proportions of misclassification
dom) training/test splits and by averaging its predictive perform- errors is measured and summarised using the area under the ROC
ance (in terms of test errors) on these splits. Cross-validation set- curve (AUC) score.[49]

ups, such as random subsampling, n-fold, or leave-one-out valida-
tion can be applied and used to average the test error over multiple

Multivariate Feature Selection Strategiesdata splits.

Choosing the Best Classification Model The learning and prediction steps are especially challenging in
If we want to search among multiple classification models and the case of high-throughput proteomics data because of the dimen-

find the best model, the choice of the best should be made sionality problem: the total number of cases used to train the
exclusively during the training stage. The selection of the best classifier is small compared with the dimensionality of each input
classification model based on the test error is an unreliable and vector. For example, the pancreatic cancer dataset used in this
biased estimate of the selected model’s generalisation perform- study consists of 116 profile samples, each with 60 264 m/z value
ance. The reason is that such a test error does not report on the measurements. Parameters associated with classifiers that rely on
performance of the best model itself; it reports on the minimum very large numbers of inputs cannot be reliably estimated because
test error statistic defined by all classifier models under considera- some are likely to attain discrimination power by chance. Moreo-
tion. In other words, when predicting future (unseen) examples, ver, when the number of individual measurements vastly out-
we do not know the best model to apply ahead of time. Thus, the weighs the number of samples, parameter estimates are made with
correct model selection should be performed on the training set, high variance. This prompts the development of feature reduction
and internal cross-validation should be used to pick the best techniques that convert high-dimensional input data into a small
alternative. set of highly discriminative features. Using such features leads to a

less complex classifier whose parameters can be then estimated
Permutation-Based Validation of Classification more reliably.
The evaluation results can be strengthened through additional Ideally we want to identify a small set of features that let us

statistical validation tests.[45] In particular, one may ask whether separate with high accuracy the profiles in the two groups. If it is
the discriminative signal picked by our model in proteomic successful, the features would define the biomarkers. Moreover, if
profiles is not the result of randomness. The significance of the features correspond to m/z positions in the profile, we are provided
result can be statistically validated by the random permutation with more information on the m/z class of peptides or protein
test.[46,47] The random permutation test gives a non-parametric complexes responsible for the differences. This can be of tremen-
method to estimate the probability distribution of the statistics dous importance for the biochemical identification of the peptide/
under the null hypothesis. In our case, the null hypothesis assumes protein features, with implication for understanding the mecha-
that the relationship between the data and the labels (case or nism of the disease and the development of new therapeutic
control) cannot be learned reliably by our feature-reduction/classi- targets. In general, the process of identifying a small set of good
fier model. Our goal is to reject this null hypothesis. The advan- and reliable features out of many possible options is a very
tage of the test is that it can be applied to validate the significance challenging task and requires exploratory work.
of any classification model and the discriminatory signal detected

The primary goal of this work is to explore and evaluate a
therein.[48]

number of multivariate feature selection approaches on the
SELDI-TOF-MS proteomics data. In the simplest case, featuresReceiver Operating Characteristic (ROC) Curves and Area Under

the ROC Curve correspond to m/z profile positions and their intensity readings.
The evaluation measures, discussed in the section titled Evalua- More complex features can characterise aggregate properties of

tion of Classifier Methods, are appropriate indicators of a learning multiple m/z positions or complete profiles. Examples of such
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features include the slope or the energy of a peak in a certain m/z n features. To alleviate this problem, the majority of practical
range or principal components of the profile. In the following feature selection methods choose features according to various
subsections, we examine a set of feature selection strategies used simpler statistical criteria or heuristics. The most common ap-
to learn predictive models for the pancreatic cancer dataset collect- proach (used frequently in microarray data analysis) is to evaluate
ed at the UPCI. the potential of every feature to discriminate profile samples

The quality of features and feature reduction strategies cannot individually through univariate statistical analysis and related
be reliably evaluated independent of the classification problem. univariate measures.
Good features arise in the context of a classifier model and the A large number of univariate methods exist for determining the
accuracy of its predictions. Because of this close coupling, we potential of a feature to differentiate between case and control.
propose to evaluate features indirectly in combination with one Examples include criteria or feature rankings based on the Fisher
classifier model: the linear SVM classifier (see subsection titled score,[51] scores based on the t-test,[4,52] Mann-Whitney U test,[10]

Classifier Models).3 Although more complex classifiers such as AUC,[15,53] mutual information score[54,55] and many others. Any of
kernel-based SVMs[39] or decision trees[16] can be and have been the above scores can be used to define a relative order of profile
applied, we believe the analysis based on simple classifiers can positions in terms of their discriminative power or to filter out
provide us with substantial information and enable us to derive positions that violate some minimum score threshold.
insights about the characteristics of profiles and features that are

An objective of feature reduction is to identify a small numberimportant for discriminatory tasks. Fixing a classifier model ap-
of features with high discriminative power. Defining the featureplied to each of the feature strategies allows us to observe and
selection criteria for high-dimensional feature spaces in terms of aevaluate the intrinsic value of each strategy in the context of such
single threshold criterion (such as the p-value threshold) mayclassifiers.
suffer from a large number of false positive identifications due to
multiple comparisons. Simple multiple comparison corrections,

Feature Selection through Univariate
such as the Bonferroni correction, attempt to quantify and control

Differential Expression
the risk of erroneously selecting at least one feature. Unfortunate-
ly, these methods are too conservative, especially for high-dimen-

Choosing a good set of features is a challenging process.
sional data sources. These problems can be alleviated by exploit-

Searching of the complete space of feature subsets is an intractable
ing methods that provide estimates and bounds of the false discov-

task: there are n-choose-k different feature subsets of size k among
ery rate.[56] The false discovery rate method controls the fraction
of false positives over the total number of positives.

In this work, instead of studying the effect of multiple compari-
sons on the number and quality of identified features we focus on
relative ordering of univariate features. Figure 4 shows a statgram
for the univariate SAM (significance analysis of microarrays)
score.[57] The score is based on the statistic proposed for the
analysis of microarray data, and it lets us order the features
according to their ability to discriminate the case and control
samples. The statistic is defined as the expression difference
between the two groups normalised with respect to deviation of
data (equation 6):

d(i) =
s(i) + s0

x+ (i) - x
-

(i)

(Eq. 6)

where  and  are the means of the case and control groups,
and s(i) is the ‘feature-specific scatter’ (equation 7):
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Fig. 4. Statgram for the SAM (significance analysis of microarrays) score
and the pancreatic cancer dataset. (a) SAM score values for each mass-to-
charge ratio (m/z) position along the profile. (b) Mean of case profiles. (c)
Mean of control profiles. Positions with a high value of the SAM score are
likely to be represented differently in case and control profiles. As visible in
the figure, the positions with the highest SAM score exhibit a noticeable
difference between means of the two sample groups.

3 To learn the SVM model, we use an iterative optimisation algorithm described by Mangasarian and Musicant.[50]
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Fig. 5. (a) The positions of the top 15 SAM (significance analysis of microarrays) score positions on the mean control profile. All features occur on the same
peak complex. (b) This area magnified. (c) A histogram plot of all correlation coefficients of the top 15 features. All correlation coefficients are high (>0.93).
m/z = mass-to-charge ratio. 

because profiles are smoothed using local averaging in the
preprocessing stage.

De-Correlation Enhancement of Univariate

(xj (i) − x+(i))2 (xj (i) − x-(i))2
ú
û

ù
ê
ë

é
+åå(n1 + n2 − 2)

(1/n1) + (1/n2)
n2

j=1

n1

j=1

s(i) =

Scoring Methods(Eq. 7)

where n1 and n2 define the number of samples in the case and
Univariate statistical methods assess the ability of an individual

control groups. The coefficient s0 lets us control the variance in
feature to discriminate between the cases and controls. However,

d(i). We use the default value of s0 = 1 for all of our experiments. we are interested in obtaining a set of features with the best
By analysing figure 4, we see that many of the peak regions combined discriminative power. To address this problem, we

with high scores manifest visible differences in intensity expres- choose and apply a simple refinement of the feature selection
methods that builds upon the results of the correlation analysis. Insions for case and control profiles. However, these differences are
particular, in addition to picking the best possible discriminativenot deterministic; not all case and control samples can be distin-
features as measured by the univariate score, we restrict the choiceguished using them. Thus, aggregate differences as captured by
to only features that are intercorrelated by less than a maximummean case and control profiles in figure 4 are often clearer.
allowed correlation (MAC) threshold. Figure 6 shows the posi-

The similar univariate scores tend to aggregate locally. Thus,
tions of the top 15 SAM scores with MAC = 0.6 on the mean

the highest scores often include multiple profile positions in the
cancer and mean control profiles.

same region. This is illustrated in figure 5a, which shows the top
One of the consequences of correlation-based filtering is that

15 SAM score positions in the profile. The result is not surprising, features are less likely to aggregate in the same region and along
because it captures the nature of a typical proteomic profile: the same peaks. Note the differences between the positions of the
positions (especially those on peaks) are highly auto-correlated top 15 features in figure 5 and figure 6. Without the de-correlation,
locally. Existing autocorrelations can be explained by a combina- all top 15 positions fall onto the same peak complex (figure 5).
tion of a number of averaging and noise effects: (a) measurements The benefit of feature de-correlation is 2-fold. First, by elimi-
of multiple laser shots are averaged; (b) a peak signature is not an nating close feature replicas we are able to select other important
ideal Dirac impulse, instead it is dispersed; and (c) positions of discriminatory features, thus improving our ability to discriminate
peaks are misaligned because of imperfect calibration, and also well between cases and controls. Second, the replicate elimina-
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Fig. 6. Positions of the 15 highest-ranking SAM (significance analysis of microarrays) features (crosses on graphs) with the maximum allowed correlation
of 0.6: (a) mean control profile and (b) mean cancer profile. The selected features (profile positions) are more distributed across the entire profile, due to
the effect of de-correlation. m/z = mass-to-charge ratio. 

tions prevent classification model overfitting, especially in models options. Figure 7a and table I (top half, labelled SAM) show the
that are highly sensitive to correlated inputs. results of the experiments for the top 1–25 SAM score features

under MAC thresholds of 0.6, 0.8 and 1.0 (no de-correlation). TheTo illustrate the effect of de-correlation on the classification
table lists four evaluation statistics: test error, 95% confidenceaccuracy, we consider a linear SVM classifier with features select-

ed based on the SAM score and restricted by different MAC bounds on test error, sensitivity and specificity. The associated
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Fig. 7. The effect of maximum allowed correlation (MAC) thresholds on test errors. (a) Feature selection with the SAM (significance analysis of
microarrays) score. (b) Feature selection with the Wilcoxon rank-sum score. Full performance statistics are given in table I. Test errors are given for varied
number of features and for different de-correlation (MAC) thresholds.
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Table I. Classification statistics for univariate feature scoring methods (SAM [significance analysis of microarrays], and Wilcoxon rank-sum test) with de-correlations and the linear
support vector machine classifier. Three maximum allowed correlation (MAC) thresholds (0.6, 0.8 and 1.0) are compared for a varied number of features (1–25)a

Method MAC = 1.0 MAC = 0.8 MAC = 0.6
used and
no. of
features test 95% CI sens spec test 95% CI sens spec test 95% CI sens spec

SAM

1 0.3903 ±0.0199 0.0641 0.5736 0.3903 ±0.0199 0.0641 0.5736 0.3903 ±0.0199 0.5736 0.6466

2 0.3931 ±0.0210 0.0679 0.5722 0.3674 ±0.0265 0.0857 0.586 0.341 ±0.0312 0.6217 0.6971

3 0.391 ±0.0198 0.064 0.575 0.3187 ±0.0335 0.1082 0.6341 0.2757 ±0.0311 0.6864 0.763

4 0.3917 ±0.0212 0.0686 0.575 0.2931 ±0.0316 0.102 0.6726 0.2576 ±0.0264 0.7153 0.77

5 0.3924 ±0.0210 0.0678 0.575 0.2812 ±0.0337 0.1088 0.6891 0.2319 ±0.0222 0.7345 0.8022

10 0.4056 ±0.0197 0.0635 0.5571 0.2306 ±0.0218 0.0704 0.7221 0.2146 ±0.0237 0.7359 0.8359

15 0.4125 ±0.0230 0.0743 0.5406 0.2326 ±0.0240 0.0775 0.7194 0.2097 ±0.0196 0.7565 0.8247

20 0.3792 ±0.0323 0.1042 0.5695 0.2243 ±0.0231 0.0745 0.751 0.2049 ±0.0191 0.762 0.8289

25 0.3625 ±0.0308 0.0995 0.5832 0.2181 ±0.0191 0.0615 0.7483 0.1979 ±0.0166 0.7744 0.8303

Wilcoxon

1 0.3903 ±0.0193 0.0623 0.7015 0.3903 ±0.0193 0.0623 0.7015 0.3903 ±0.0193 0.0623 0.7015

2 0.3729 ±0.0179 0.0576 0.74 0.3701 ±0.0192 0.0621 0.7331 0.3639 ±0.0184 0.0593 0.74

3 0.3687 ±0.0162 0.0522 0.7497 0.3458 ±0.0184 0.0593 0.7662 0.3403 ±0.0211 0.068 0.7744

4 0.3701 ±0.0156 0.0505 0.7455 0.3333 ±0.0204 0.066 0.7799 0.3361 ±0.0221 0.0714 0.7675

5 0.3708 ±0.0166 0.0536 0.7359 0.3285 ±0.0219 0.0706 0.7744 0.3313 ±0.0251 0.0809 0.762

10 0.3604 ±0.0182 0.0588 0.7428 0.3264 ±0.0251 0.081 0.7648 0.3146 ±0.0274 0.0884 0.7607

15 0.3486 ±0.0164 0.053 0.7675 0.316 ±0.0253 0.0817 0.7675 0.2993 ±0.0258 0.0833 0.7717

20 0.3472 ±0.0189 0.061 0.7675 0.3118 ±0.0252 0.0814 0.7689 0.2937 ±0.0256 0.0827 0.7758

25 0.334 ±0.0218 0.0705 0.7785 0.3104 ±0.0251 0.081 0.7565 0.2875 ±0.0243 0.0785 0.773

a All statistics listed are averages obtained over 40 standardised train/test splits. The split ratio of 70/30 was applied to all splits.

95% CI = 95% confidence intervals on test error; sens = sensitivity; spec = specificity; test = test error.
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graph in figure 7a shows test errors only. Figure 7b and table I depends on the number of MAC levels tracked. The resolution of
(bottom half, labelled Wilcoxon) illustrate the effect of de-correla- the method may be controlled by increasing or decreasing the
tions in combination with another feature scoring criterion: the number of MAC thresholds.
Wilcoxon rank-sum test. Table II illustrates the results of application of the parallel

The results on two univariate scores clearly illustrate the bene- MAC method on the UPCI pancreatic cancer dataset. Figure 8
fits of de-correlation filtering. Elimination of highly correlated compares the test errors of the parallel MAC method with the fixed
features is able to boost the performance of the classifier defined MAC methods for the SAM and Wilcoxon scores.
on the remaining features. Stricter threshold on the MAC appears In terms of the multivariate feature selection, the parallel MAC
to yield better results for SAM. However, the tighter threshold method is a heuristic. In every step the next top feature is picked
does not always imply better classification accuracy. This can be greedily from among a small number of candidates determined by
observed on classifiers built for Wilcoxon scores, where MAC = the thresholds. The number of candidates can be controlled by the
0.8 appears to improve over MAC = 0.6 when using 25 features, resolution of the MAC thresholds, thus it is independent of the
and we have also observed such a variability on other proteomic total number of features.
datasets.

Peak-Centred AnalysisTable I and figure 7 illustrate another important feature: the
sensitivity of the classifier accuracy on the choice of the univariate

Problems of high-dimensional profile data can be partly re-
scoring. We have tested multiple differential scoring methods

solved by focusing on signal peaks and features associated with
(many come from microarray studies) including the Fisher-like

the peaks. Peak selection or peak detection methods are quite
score,[51] AUC,[15] t-test score[52,58] and simple and weighted sepa-

popular among SELDI-TOF-MS researchers (see Adam et al.,[13]

rability scores on multiple proteomic datasets. We did not identify
Yasui et al.[17] and Coombes et al.[60]) in particular, because peaks,

a clear winner, but the SAM score appears to perform very well
as observed in profiles, are believed to represent discrete proteins

and is consistently among the top-scoring methods.
or their fragments. However, peak signatures in profiles are not
perfect: individual peaks are spread over a wider area, thus theMultivariate Greedy Features with De-Correlation Filtering
signatures of more than one peak become convolved. Low-resolu-
tion profiles can make the problem even worse: the readingsEnforcing MAC thresholds tends to improve the quality of the
recorded are already mixtures of peak signatures. In addition, peakfeature set, but the best MAC value varies from dataset to dataset
positions may be shifted because of mass inaccuracy in differentand it is also different for different univariate criteria. This
samples. As a result, exact peak positions and their intensities areprompts the development of methods for choosing the MAC
hard to pinpoint. Because of these factors, the identification ofthreshold candidate. To address this problem, instead of searching
peaks and definition of appropriate peak-descriptive statistics posefor the best MAC we have developed a new multivariate feature
a challenging research problem.selection procedure that combines the advantages of univariate

feature scoring and de-correlation. We refer to the new mul- In this article, we study a relatively simple peak-centred feature
tivariate feature selection procedure as the parallel MAC method. selection strategy that attempts to identify peak positions for sets

of profiles and restricts the subsequent interpretive analysis to onlyThe parallel MAC procedure first rank-orders features using a
such positions. The key idea we adopt is based on profile averag-given univariate differential expression score and then builds a
ing: the peak position is identified on a ‘mean’ profile that isfeature set incrementally by choosing the best new feature from
obtained by averaging all profiles in the training set.4 The advan-among multiple candidate features, each of them being the highest
tage of using the mean profile is that one can often benefit from theunivariate score candidate at some fixed MAC level. The best
resulting noise reduction, which leads to a cleaner profile andfeature is determined using an internal cross-validation approach.
more reliable peak-position estimates. The same profile averagingWe use 10-fold cross-validation as the default. Note that the
approach has also been recently adopted by Coombes et al.[60]approach is different from the classic greedy wrapper approach

that must scan and evaluate all (~60 000) possible candidate We have implemented this peak-selection procedure and tested
features.[59] In contrast to this, our model scans and evaluates only it on the pancreatic cancer dataset. Since the number of peak
feature candidates that correspond to the highest ranked candidates positions identified in SELDI-TOF-MS profiles remains relatively
at different MAC levels, and the number of candidates compared large, peak selection should be combined with other feature reduc-

4 An alternative approach is to split profiles into two groups, case and control, and average them separately. This would eliminate a chance of peak
cancellation. However, in this case a peak alignment procedure is necessary to merge two sets of peak positions.

 2005 Adis Data Information BV. All rights reserved. Appl Bioinformatics 2005; 4 (4)



240 Hauskrecht et al.

tion strategies. Figure 9 shows the positions of the highest-ranked
15 peaks identified by the parallel MAC method restricted to peaks
on the mean case and control profiles.

Table III shows the performance of SVM classifiers restricted
to peaks selected by the SAM and Wilcoxon differential feature
selection measurements. Comparing these with whole-profile
analysis results in figure 8, we see that test errors on the SVM have
improved in one case but are comparable in the other. However,
we have seen cancer datasets where the whole-profile analysis
outperformed the peak-only analysis, so, in general, we cannot say
that one is always preferred to the other. The reasons why the
whole-profile analysis may become better is that the peaks in the
low-resolution SELDI-TOF-MS profiles may overlap and the
discriminative information can be hidden anywhere (in valleys,
slopes of the profile, etc.). Thus, pure focus on peaks carries a
threat of information loss: some important discriminative clues in
profiles may be overlooked. To be thorough, both analysis modes
should be explored.

As can be seen from the differences in figure 8 and figure 10,
de-correlation can help us achieve a lower error in both modes of
analysis. Benefits in whole-profile analysis are more obvious,
when correlations between covariates can be frequent. In the case
of peaks, double- and triple-charged ions in the signal may re-
present full correlations between peaks, and restriction to peak
positions alone may result in redundant information. By applying
the de-correlation filter to peak-selected covariates, we can elimi-
nate these uninformative peaks, which further reduces our search
space for features.

Multivariate Features Based on Principal
Component Analysis

An alternative approach to multivariate feature selection is
offered by multivariate projection techniques such as PCA[21] or
ICA.[22,23] PCA is a widely used method for reducing the number
of dimensions of a dataset. The PCA computes projections of a
high-dimensional data into a lower dimensional subspace such that
the variance retained in the projected data is maximised. Equiva-
lently, the PCA gives uncorrelated projected distributions and
minimises the least-square reconstruction error. From the prote-
omic profile perspective, PCA identifies orthogonal sets of corre-
lated features and constructs composite features (components) that
are uncorrelated but tend to explain most of the observed variance
in the data.

Figure 11a shows the result of the SVM classifier trained with
up to 25 PCA features that correspond to the eigenvectors of the
data matrix with the highest eigenvalues. Likewise, figure 11b
displays the same results on peak-selected data. The principal
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Fig. 8. A comparison of the parallel maximum allowed correlation (MAC) method to classifiers with MAC = 0.6, 0.8 and 1.0. (a) Feature selection with the
SAM (significance analysis of microarrays) score. (b) Feature selection with the Wilcoxon rank-sum score. Test errors are given for a varied number of
features and for different de-correlation (MAC) thresholds. Additional performance statistics are given in table I and table II.

component projections enable classification of case versus control techniques (univariate differential expression) that let us select k
with test errors comparable with the multivariate method with profile positions (biomarkers) directly. The PCA components tell
parallel MAC thresholds. us what positions are more important for the first, second, etc.

projections, but each of these is a combination of features that areThe limitation of the PCA approach is the interpretation of the
on equal or very similar levels.features. Identification of profile positions responsible for good

discriminatory performance is much more difficult than the earlier
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Fig. 9. Positions of the 15 highest-ranking SAM (significance analysis of microarrays) features (crosses on graphs) restricted to peaks: (a) mean control
profile and (b) mean case profile. The positions available for feature selection are limited to local maxima. m/z = mass-to-charge ratio.
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Table III. Classification statistics for univariate feature scoring methods (SAM [significance analysis of microarrays], and Wilcoxon rank-sum test) with de-correlations and the linear
support vector machine classifier on peak-only analysis. Three maximum allowed correlation (MAC) thresholds (0.6, 0.8 and 1.0) are compared for a varied number of features
(1–25)a

Method MAC = 1.0 MAC = 0.8 MAC = 0.6
used and
no. of
features test 95% CI sens spec test 95% CI sens spec test 95% CI sens spec

SAM

1 0.3903 ±0.0199 0.0641 0.5736 0.3903 ±0.0199 0.0641 0.5736 0.3903 ±0.0199 0.0641 0.5736

2 0.3653 ±0.0260 0.0838 0.5997 0.366 ±0.0272 0.0878 0.5818 0.3188 ±0.0333 0.1073 0.6327

3 0.3361 ±0.0276 0.0889 0.6272 0.3 ±0.0314 0.1015 0.6602 0.2458 ±0.0274 0.0884 0.7153

4 0.3188 ±0.0299 0.0964 0.6451 0.2458 ±0.0268 0.0864 0.7249 0.2319 ±0.0266 0.0857 0.7387

5 0.2972 ±0.0304 0.0981 0.663 0.2326 ±0.0253 0.0817 0.729 0.2153 ±0.0212 0.0683 0.7552

10 0.209 ±0.0276 0.0892 0.7662 0.2083 ±0.0211 0.068 0.7552 0.1924 ±0.0198 0.064 0.7744

15 0.1972 ±0.0218 0.0703 0.7772 0.1868 ±0.0186 0.06 0.7895 0.1903 ±0.0182 0.0589 0.7785

20 0.1875 ±0.0200 0.0644 0.7882 0.1854 ±0.0164 0.0528 0.7868 0.1854 ±0.0189 0.0611 0.7895

25 0.1854 ±0.0247 0.0797 0.8047 0.1833 ±0.0191 0.0616 0.7923 0.1861 ±0.0188 0.0607 0.7909

Wilcoxon

1 0.3854 ±0.0168 0.0542 0.718 0.3854 ±0.0168 0.0542 0.718 0.3854 ±0.0168 0.0542 0.718

2 0.3722 ±0.0220 0.0708 0.7387 0.3472 ±0.0226 0.0728 0.762 0.3375 ±0.0207 0.0667 0.7758

3 0.3597 ±0.0228 0.0736 0.7524 0.3312 ±0.0224 0.0724 0.7758 0.3083 ±0.0271 0.0873 0.7428

4 0.3514 ±0.0200 0.0646 0.7524 0.316 ±0.0236 0.0762 0.7552 0.2944 ±0.0290 0.0937 0.7428

5 0.3465 ±0.0310 0.1001 0.7331 0.3146 ±0.0265 0.0856 0.7524 0.2826 ±0.0299 0.0966 0.7428

10 0.3222 ±0.0280 0.0902 0.7331 0.2986 ±0.0306 0.0988 0.74 0.2472 ±0.0298 0.0962 0.7675

15 0.3236 ±0.0289 0.0932 0.7249 0.2937 ±0.0317 0.1022 0.74 0.2257 ±0.0272 0.0879 0.7662

20 0.2972 ±0.0309 0.0997 0.729 0.2847 ±0.0324 0.1046 0.751 0.2104 ±0.0238 0.0768 0.7675

25 0.2896 ±0.0303 0.0978 0.7304 0.2687 ±0.0315 0.1017 0.7675 0.2007 ±0.0206 0.0664 0.7662

a All statistics listed are averages obtained over 40 standardised train/test splits. The split ratio of 70/30 was applied to all splits.

95% CI = 95% confidence intervals on test error; sens = sensitivity; spec = specificity; test = test error.
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Fig. 10. A comparison of the parallel maximum allowed correlation (MAC) method to classifiers with MAC = 0.6, 0.8 and 1.0 when restricted to peaks. (a)
Feature selection with the SAM (significance analysis of microarrays) score. (b) Feature selection with the Wilcoxon rank-sum score. Test errors are given
for varied number of features and for different de-correlation (MAC) thresholds. The corresponding data are given in table III and table IV.

Permutation-Based Validation illustrate a large gap between classification errors achieved on the
data and classification errors under the null (random class-label)

The results presented above show that it is possible to learn hypothesis. This shows that our achieved error results are not a
predictive models that can achieve a low classification error on the coincidence. However, we note that the permutation test does not
SELDI-TOF-MS samples. To support the significance of these protect against data biases and possible confounding introduced
results, particularly the fact that the sample profiles carry useful through case/control subject selection, sample collection or sam-
discriminative signal, one may seek additional statistical valida- ple preprocessing steps. A more thorough exploration of permuta-
tion. The goal of one such a test, the random class-permutation tion-based validation methods can be found in Lyons-Weiler et
test, is to verify that the discriminative signal captured by the al.[45]

classifier model is unlikely to be the result of the random data
labelling. Figure 12 shows the result of the random permutation Conclusions
test for the parallel MAC classifiers analysed in figure 8 and figure
10. The figure plots the estimate of the mean test error one would In a recently published discussion, Diamandis[61] and Petricoin
obtain by learning the classifier on 5–25 features for randomly and Liotta[62] shared their views on the likely research and clinical
assigned class labels, and estimates of 95% and 99% test error utility of SELDI-TOF-MS profiling. Diamandis[61] raises a num-
bounds. The estimates are obtained using 100 random class-label ber of concerns about the utility of SELDI-TOF-MS technology.
permutations of the original pancreatic cancer dataset. The results The work in this article addresses some of these concerns. First,
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Fig. 11. Comparison of discriminability of features obtained by the parallel maximum allowed correlation (MAC) and principal component analysis (PCA)
approaches: (a) whole-profile analysis and (b) peak-only analysis. The performance of this technique is plotted against the performance of the SAM
(significance analysis of microarrays) score classifier for the purpose of comparison. The corresponding data are given in tables I to IV.
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under the null hypothesis: the class labels in the data are assigned to profiles randomly. The black and white circles indicate the estimate of the 95th
percentile and the 99th percentile, respectively, of the test error statistic under the null hypothesis. The squares indicate achieved classification errors
(ACE) using the original data labelling.

the results show that SELDI-TOF-MS-based profiling can indeed systematic sources of errors is needed. Very little is presently
lead to good predictive case-control models. Second, it shows that known regarding possible non-instrument sources of variations
feature selection that takes into account characteristics of the (data collection, data storage, surface irregularities). Understand-
spectra, particularly correlations among intensity measurements in ing these sources may lead to a better experimental design and
the profile, helps to improve the discriminatory performance. The improved ability to detect the true discriminative information.
presence of correlates in the signal and their substitutability also Finally, the main focus of this study was on analysis of mul-
explains the variety of possible m/z feature panels with compara- tivariate feature selection methods. To keep it simple we restricted
ble discriminatory power. our analysis to only linear SVM classifiers, which nevertheless

may have affected the accuracy of profile classifications. AlthoughMultivariate feature selection is the key to our ability to learn
preliminary results on the pancreatic cancer dataset indicate thatthe discriminative patterns in cancer datasets available today. In
the technology is able to discriminate well between the cases andthis study we have focused on statistical techniques to efficiently
controls, higher sensitivities and specificities are needed to makeidentify a small set of highly discriminative features. We have
the SELDI-TOF-MS screening a clinically useful approach. Thedemonstrated a good discriminative performance of a number of
evaluation of a diversity of complex classification models inrelatively simple feature selection methods on the UPCI pancreatic
combination with multivariate feature selection methods is neededcancer dataset. Especially useful is our de-correlation enhance-
to assess the true potential and detection limits of the SELDIment of the univariate feature selection methods. The de-correla-
technology on these data.tion approach tends to improve the performance of feature selec-

tion methods in both the whole-profile and peak-only modes on The SELDI-TOF-MS technology of Ciphergen Biosystems Inc.
pancreatic cancer data. We note that we have obtained and ob- yields relatively low-resolution profiles, which are likely to limit
served similar improvements on other UPCI and publicly available its applicability at some point. For example, a limited instrument
datasets, including lung, melanoma, prostate and ovarian cancer resolution may not be able to detect higher resolution signals, and
datasets. It is very likely that the introduction of additional knowl- potentially useful differences therein may remain hidden and
edge, such as peptide identification of m/z values, can further convolved with other signals. Increasing use of new high mass
improve the performance of feature selection methods. resolution, matrix-assisted laser desorption/ionisation (MALDI)/

SELDI-TOF-MS instruments will provide larger, and more analyt-Many research issues related to SELDI-TOF-MS datasets re-
ically challenging, datasets to test these questions. In addition, amain open. More work is needed to optimise data preprocessing
low-resolution profile is harder to use for the protein identificationsteps, particularly profile rescaling. Thorough evaluation of bene-

fits of all preprocessing steps and their order in the removal of task. Thus, higher resolution instruments, with integrated peak

 2005 Adis Data Information BV. All rights reserved. Appl Bioinformatics 2005; 4 (4)
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identification capability, are needed (and are increasingly availa-
ble) for true biomarker discovery. However, we believe that the
understanding of the nature of a proteomic signal, possible sources
of variations and techniques for their removal, and multivariate
data analysis methods developed in this work will also apply to
other profiling platforms.
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